

Neutron Reflectometry for Formulations

Becky Welbourn (becky.welbourn@stfc.ac.uk)

Why Use Neutron Reflection?

- Probes buried interfaces in-situ
 - H/D exchange allows focus on different parts of the system
 - Elemental sensitivity is not mass related
- Example systems measured:
 - Biological membranes
 - Solar cells
 - Detergents
 - Corrosion inhibitors
 - Magnetic thin-film

Experimental Geometry

- Solid-liquid
- Air-liquid
- Air-solid

Extracting Sample Information

• Consider the system as a series of "blocks" at the surface:

Sample Environment – e.g.

- Solid liquid
 - HPLC pump/syringe pump
 - Water baths
 - Potentiostat
- Air-liquid
 - Langmuir troughs
 - humidity, temperature, gas
 - FTIR
- Air-solid
 - Active heating/cooling
 - Vacuum or N₂ atmosphere
 - Magnets/cryostats for magnetic samples

NR beamlines

- We have 4 reflectometers here at ISIS:
 - SURF and INTER
 - NR, incl. liquid surfaces
 - POLREF
 - Also capable of PNR and vertical samples
 - OFFSPEC
 - PNR, with focus on offspecular and spin-echo

Contrast Matching

Some Examples

Anionic Surfactant Multilayers

Xu et al. 2013, Langmuir, 29

- Surfactant single and multi-layer formation at air-liquid interface
 - Including inter-layer spacing
- Variation with chain length and added Al³⁺

• Use careful contrast variation to "see" different parts

Surfactants at the Oil-Water Interface

 See broader interface, with staggered conformation (both zwitterionic and non-ionic)

Oil

Studying Asymmetric Membranes *in vitro*

Distance / A

Clifton et al. 2015, Angew. Chem. Int. Ed.

BERREN

Distance / A

×104A2

- Mimic outer membrane using a floating bilayer model
- Use PNR for extra contrast
- See disruption of the layer on addition of 2 different proteins

Hydrogen Storage: Kinetic Studies

Bannenberg et al. 2016, J Phys Chem C, 120

- Hydrogen (deuterium) loading and unloading into the Mg layer was measured with time
 - kinetic slices of 1min and 10min
- Both off-specular and specular were measured

