

Membrane emulsification: an innovative continuous process to create highly uniform capsules/particles

Dr Marijana Dragosavac Loughborough University Chemical Engineering Department

PRESENTATION LAYOUT

- How can we produce drops and turn them into particles?
- Conventional ways to produce drops
- Drop by Drop devices to produce drops
 - Microchannel & Membrane emulsification
- Specific encapsulations from drops to particles

PARTICLE FORMULATION BACKGROUND

- Highest value products complex formulated systems
- To produce uniform particles

 novel methods for producing
 novel formulations
- Droplets with D >10 μ m have become increasingly popular
- Additional treatment of the droplets is needed to produce particles

IF WE COULD CREATE A DROP THEN WITH THE ADITIONAL TREATMENT WE COULD GET THE SPHERICAL PARTICLE

MAKING EMULSIONS - CONVENTIONAL WAY

They all apply **more energy** than needed for the production of droplets, and give droplets with **wide size distribution** if larger droplets are wanted.

MAKING EMULSIONS - DROP-BY-DROP

Microchannel emulsification

Injection of dispersed phase through microgrooves.

Kawakatsu et. al. 1997

Membrane emulsification

Injection of dispersed phase through membrane.

Patent - Asher and Tsien 1980

Nakashima et. al. 1991

They use **low energy** per unit volume and give **monosized distribution**.

MAKING EMULSIONS - DROP-BY-DROP

Microchannel emulsification

Membrane emulsification NO shear Hydrophilic nickel

membrane

Apply shear No change in droplet size

Dragosavac 2012

Apply shear smaller droplets obtained

Kosvintsev 2008

MEMBRANE EMULSIFICATION

MEMBRANES AVAILABLE AT THE MARKET

Ceramic membranes TAMI industries (France) Various other producers Drop size 0.3 - 40 μm

SPG memberson SPG Teennology Co.,I Japan

Drop size 0.2 - 40 µm

Fragile

METAL MEMBRANES

Stainless steel membranes

Nickel membranes

used at Loughborough

MEMBRANE SURFACE

O/W and W/O/W W/O and O/W/O

Hydrophilic surface

Oil droplet

Hydrophobic surface

Water droplet

MODELLING

FORCE BALANCE MODEL

$$F_{ca} - \text{Capillary force}$$

$$F_{ca} = f(g, r_p)$$

$$F_d - \text{Drag force}$$

$$F_d = f(t_{\max}, r_p, d)$$

$$t_{\max} = 0.825hWr_{trans}\frac{1}{d}$$

SHEAR STRESS ON THE MEMBRANE SURFACE

Movements of continuous phase:

- **§** STIRRING
- **§** CROSS FLOW
- **§** PULSATIONS OF THE CONTINUOUS PHASE

Movements of the membrane:

- **§** VIBRATIONS
- **§ ROTATIONS**
- **§** TORSIONAL MOVEMENTS

SOME OF THE PARTICLES PRODUCED UP TO DATE AT LOUGHBOROUGH

Cell encapsulation

Complex coacervation

Porous inorganic silica particles

Biodegradable polymeric particles (PCL)

COMPLEX COACERVATION O/W emulsion

Motivation for the work:

Currently batch production High polydispersity of the product and usually too big droplet size

Need for pig gelatine alternative

Piacentini, Emma, et al. "Microencapsulation of oil droplets using cold water fish gelatine/gum arabic complex coacervation by membrane emulsification." *Food research international* 53.1 (2013): 362-372.

COMPLEX COACERVATION

- **1. Drop production** in hydrocolloids solution
- 2. Coacervation (phase separation) implying the formation of a coacervate phase pH adjustment
- 3. Wall formation by aggregation of the hydrocolloid around droplets of the emulsified hydrophobic material time, room temperature
- **4. Wall-hardening**, which is generally achieved by crosslinking the hydrocolloid forming the wall

COMPLEX COACERVATION

COMPLEX COACERVATION – Oil encapsulation FISH GELATINE CAPSULES

WHY FISH GELATINE?

- ROOM TEMPERATURE less energy compared to alternative gelatine types and
- New possibilities for encapsulation of VOLATILE COMPOUNDS
- Increased CONSUMER consent for religious or diet reasons and health safety

Piaccentini et al., 2013

ITM-CNR @ University of Calabria, Rende

DIFFERENT RATIOS OF FG:GA – PARTICLE SIZE

DIFFERENT RATIOS OF FG:GA FOR MICROCAPSULES

ROOM TEMPERATURE

Piaccentini et al., 2013

FG:GA (a) 30:70; (b) 40:60; (c) 80:20; and (d) 50:50.

PARTICLE SIZE CONTROL WITH SURFACTANT ADDED

FRAGRANCE OIL ENTRAPMENT

Freeze dried particles (to enable future volatile compound encapsulation)

Silica particles or diatomaceous earth added to produce free flowing particles

Piaccentini et al., 2013

COMPLEX COACERVATION

DISPERSION CELL, PULSATING & VIBRATING SYSTEM

Dispersed phase: Sunflower oil Continuous phase: Fish gelatine (FG) and Gum Arabic (GA)

Flow through the pulsed membrane = $3L h^{-1}$

SPAN for all experiments below 0.5

Piaccentini et al., 2013

CURRENT WORK - COMPLEX COACERVATION

CONTINUOUS ENCAPSULATION/SHELL FORMATION

CONTINUOUS ENCAPSULATION/SHELL FORMATION

ANTYCANCER DRUG ENCAPSULATION O/W & W/O/W

Motivation for the work:

Currently batch production Low uniformity of the produced particles using conventional emulsification methods Need for higher encapsulation efficiency

Anticancer drug - extremely expensive & temperature sensitive)

3rd Latin-America Symposium on Microencapsulation

ENCAPSULATION OF <u>WATER</u> SOLUBLE PEPTIDE USING BIODEGRADABLE POLYMER

- 1. Dispersion phase polymer (PLGA) mixed with DCM (volatile oil phase)
- 2. Mixing the peptide with previously prepared dispersion phase
- 3. Injecting through the membrane into 1% PVA solution
- 4. DCM will evaporate from the particles leaving only peptide within the spherical PLGA particles

ENCAPSULATION OF <u>WATER</u> SOLUBLE PEPTIDE USING BIODEGRADABLE POLYMER

O/W EMULSIONS

HPLC - ENCAPSULATION EFFICIENCY (EE) OF PEPTIDE

üCancer treatment	POLYMER CONCENTRATION (%)	EE (%)
COSOLVENT METHOD (O/W)	10	40
	20	50
W/0/W	10	70
	20	85

W/O/W EMULSIONS

Commercially available 14 day kit (~1g particles/70mgpeptide)

Dragosavac 2012, Unpublished material

3rd Latin-America Symposium on Microencapsulation

ENCAPSULATION OF <u>WATER</u> SOLUBLE PEPTIDE USING BIODEGRADABLE POLYMER

G. Gasparini et. al, 2010, Colloids and Surfaces B: Biointerfaces

HIGH THROUGHPUT - SINGLE PASS SYSTEM

HIGH THROUGHPUT - SINGLE PASS SYSTEM

SINGLE PASS SYSTEM (9 mm insert)

Dispersed phase Sunflower oil; continuous phase 2% Tween 20 up to 10 L h⁻¹ of injected phase

Drop diameter (solid markers) and CV (open markers) as a function of the shear stress

SINGLE PASS SYSTEM (9 mm insert) Dispersed phase Sunflower oil; continuous phase 2% Tween 20

10 L h⁻¹ of injected phase

SINGLE PASS SYSTEM (9 mm insert) Dispersed phase 4% PCL in DCM; continuous phase 1% PVA

up to 10 L h⁻¹ of injected phase

Drop diameter (solid markers) and CV (open markers) as a function of the shear stress

SINGLE PASS SYSTEM (9 mm insert) Dispersed phase 4% PCL in DCM; continuous phase 1% PVA

10 L h⁻¹ of injected phase

ENCAPSULATED YEAST CELLS W/O emulsion

Aim to produce pH sensitive particles and exploit the pH to deliver the active ingredient (e.g. cells)

Morelli, Serena, R. G. Holdich, and Marijana M. Dragosavac. "Microparticles for cell encapsulation and colonic delivery produced by membrane emulsification." *Journal of Membrane Science* 524 (2017): 377-388.

Intestine delivery of probiotic

▼Release of probiotic into the small intestine- colon area, exploiting the pH 7-8 existing

3rd Latin-America Symposium on Microencapsulation

Saccharomyces boulardii has shown probiotic activity

Eudragit S100 coating process

Coated microparticles resulted smaller in size than the uncoated ones - less able to swell

^{*}Zhang, Lin, et al. "Eudragit® S100 coated calcium pectinate microspheres of curcumin for colon targeting." *Journal of microencapsulation* 28.7 (2011), 659-667

Influence of the cell concentration on emulsion characteristic

The amount of cell encapsulated does not affect the resulting droplet size and uniformity

Microparticles dissolution time and pH

(a) Uncoated microparticle in water (b) O_1/O_2 emulsion during the coating process after 0 minutes and

(c) 4 hours, (d) microparticle re-suspended in water after washing in hexane and drying at room temperature.

Eudragit coated particles survived the acidic environment and released the content at pH 7-8

Cell viability determination

Loughborough University

Confocal analysis using fluorescent dyes

The yeast released from the particles survived to the encapsulation process and stomach pH

CONCLUSION

- Metal membranes and single pass system provide high throughput up to 10 L h⁻¹
- Process can be scaled up
- Uniform particles $10 250 \ \mu m$

Conventional formulation needs to be adjusted to work

ACKNOWLEDGEMENTS

Micro / Nano – Materials Engineering Group, *Prof. Richard G. Holdich Dr Goran T. Vladisavljevic*

Microchannel Array Engineering Team, National Food Research Institute, Tsukuba, Japan. Prof. Mitsutoshi Nakajima

Visiting researchers:

Larissa Consoli Brazil, Emma Piaccentini, CNR Italy, Alessandra Imbrognio, CNR Italy Miguel Angel Suarez Valdes, UNIDAV, Spain

For the membranes and equipment:

Micropore Technologies Ltd. UK Students:

Marianna Petronela Vamanu, Serena Morelli, Seyitan Odunola, Ryan Barnfield, Alix Barton,

Dr Konstantin Loponov

Funding: EPSRC

Engineering and Physical Sciences Research Council

Innovate UK

THANK YOU FOR YOUR ATTENTION