Mesoporous CaCO₃ crystals a powerful tool for bio-friendly encapsulation

Dmitry Volodkin

Group "Active-Bio-Coatings"

Prof Assoc

School of Science and Technology, Nottingham Trent University Nottingham, United Kingdom

1. Motivation

Seeking sacrificial templates for bio-friendly protein encapsulation

2. Mesoporous vaterite CaCO₃ crystals

Synthesis, control over size and porosity

3. Protein particles

One-component compact/porous protein beads

4. Multilayer capsules

Biomolecule encapsulation into finely-tuned polymer shells

5. Polymer scaffolds

Porous 3D scaffold for cell culture and tissue engineering

Proteins as effective therapeutic agents

Antibodies, Hormones, Growth factors, Enzymes, Cytokines, Vaccines, Peptides, etc

Increased number of effective therapeutic proteins available on market Forecast: \$315.90 billion by 2025*

Protein encapsulation:

- protection against biodegradation, local pH changes
- complexation with biomolecules that block the protein activity
- proper administration route
- targeted delivery and controlled release

Traditional encapsulation technologies

Crystallization, emulsification, spray- and freeze-drying, incorporation into polymeric and lipid matrices

- mechanical stresses (shear forces), creating additional interfaces
- high or low temperature, organic solvents, salt, pH
- surfactants or polymers

The challenge - develop effective encapsulation approaches to <u>keep protein</u> <u>bioactivity</u> and finely <u>tune a size and physical-chemical properties of a carrier</u>

^{* -} https://globenewswire.com/news-release/2017/01/26/911299/0/en/Protein-Therapeutics-Market-Analysis-and-Trends-Report-2016-Therapeutic-Proteins-Application-Function-Forecast-to-2025-for-the-315-9-Billion-Market.html

1. Motivation

Seeking sacrificial templates for bio-friendly protein encapsulation

2. Mesoporous vaterite CaCO₃ crystals

Synthesis, control over size and porosity

3. Protein particles

One-component compact/porous protein beads

4. Multilayer capsules

Biomolecule encapsulation into finely-tuned polymer shells

5. Polymer scaffolds

Porous 3D scaffold for cell culture and tissue engineering

Porous CaCO₃ microcrystals

Volodkin DV. et al *Langmuir* 2004 Volodkin DV. et al *Biomacromolecules* 2004

Schmidt S. et al *J. Mater. Chem*. 2013 Schmidt S. et al *Adv Func Mater* 2013

Nanometer sized CaCO₃ crystals. Variation of shape

430 nm crystals are stabilized by ethylene glycol (supresses ion transport and nucleation rate)

0+0.5

1 10

Time (min)

83% ethylene glycol

30 90

30 90

Time (min)

water

0

0.5 1 10

Parakhonskiy B et al Angew Chem Int Ed 2012; Chem Phys Chem 2014

Porosity control

Porosity control

Higher T results in faster Ostwald ripening of nano-crystallines

1. Motivation

Seeking sacrificial templates for bio-friendly protein encapsulation

2. Mesoporous vaterite CaCO₃ crystals

Synthesis, control over size and porosity

3. Protein particles

One-component compact/porous protein beads

4. Multilayer capsules

Biomolecule encapsulation into finely-tuned polymer shells

5. Polymer scaffolds

Porous 3D scaffold for cell culture and tissue engineering

Protein beads

0 sec 5 sec 5 sec 15 sec 15 sec 7 μm 20 μm 20 μm 20 μm

D. V. Volodkin *et al* **Angew Chem Int Ed** 2010 D. V. Volodkin *et al* **Adv Func Mater** 2012 S. Schmidt, et al *Adv Func Mater* 2013 S. Schmidt et al *J Mater Chem* 2013

Catalysis and blood substitute

Deoxyhemoglobin (grey) Oxyhemoglobin particles (black)

S. Schmidt, et al Adv Func Mater 2013

Hemoglobin porous beads as blood substitute

Mechanical properties – deformation in microchannels

S. Schmidt, et al Adv Func Mater 2013

Compact insulin microbeads

One step fabrication

D. V. Volodkin et al Angew Chem Int Ed 2010

Compact insulin microbeads

CaCO ₃ microcore diameter, μm (average pore diameter, nm)		3.0 ± 0.9 (28 ± 4 nm)	5.5 ± 0.6 (25 ± 3 nm)	15.2 ± 3.8 (26 ± 4 nm)
Insuli n	<mark>Diameter</mark> , μm by CLSM (SEM)	2.2 ± 0.4 (2.0 ± 0.8)	3.5 ± 0.4 (3.9 ± 0.9)	10.5 ± 3.8 (9.7 ± 2.9)
beads	Diameter shrinkage coefficient	1.36	1.34	1.45
	Protein density , g/cm ³	0.34 ± 0.09	0.33 ± 0.07	0.36 ± 0.10
	Aerodynamic diameter $(d_a)^*$, μm	1.3 ± 0.2	2.0 ± 0.2	6.3 ± 2.3

* $d_a = d(\rho/\rho_{water})^{1/2} = d(\rho)^{1/2}$ ρ – protein density d_a for pulmonary delivery 1-6 μm

SEM, beads mixture

CLSM

D. V. Volodkin et al Angew Chem Int Ed 2010

Phagocytosis with alveolar macrophages

Idea: reduce phagocytic clearance by increasing the insulin particles size

Uptake of insulin particles of different sizes by alveolar Macrophages NR8383.

Schmidt, S., et al Acta Biomaterialia 2014

1. Motivation

Seeking sacrificial templates for bio-friendly protein encapsulation

2. Mesoporous vaterite CaCO₃ crystals

Synthesis, control over size and porosity

3. Protein particles

One-component compact/porous protein beads

4. Multilayer capsules

Biomolecule encapsulation into finely-tuned polymer shells

5. Polymer scaffolds

Porous 3D scaffold for cell culture and tissue engineering

Layer-by-Layer assembled multilayer capsules

G. B. Sukhorukov, et al Colloid Surf. A-Physicochem. Eng. Asp., 1998.

Bio-friendly cores for capsule formation

Table 1: Templates used for the preparation of hollow polyelectrolyte capsules.						
Parameter	Melamine formalde- hyde ^[18]	Polystyrene latex ^[58]	Silica ^[163]	Erythrocytes ^[162]	CdCO ₃ , MnCO ₃ , CaCO ₃	PLA/ PLGA ^[160]
Size (μm) shape monodispersity	0.3–10 spherical excellent	0.1–5 spherical excellent	0.03–100 spherical good–excel- lent	5.5–7.5 discocytes good	3–8 crystalline, porous medium	0.2–20 spherical low
commercial availability price problems upon dissolu- tion	+ very high mechanical stress; residues	+ medium mechanical stress; residues	+ low aggregation	+ low chemical stress; wall destruction	– – no stress	+ / low residues
Decomposition medium	0.1M HCL	organic solvent	HF	HCLO	pH<7 or EDTA	organic solvent

Encapsulation through porous CaCO₃

Light-triggered release (capsule shell overheating)

Dextrane filled (PDADMAC/PSS)₄

capsules (2 µm) coated with Au NPs

Skirtach AG et al Nano Lett 2005

Volodkin et al *Langmuir* 2009 Volodkin et al *ACS Appl. Mater. Int.* 2009

1. Motivation

Seeking sacrificial templates for bio-friendly protein encapsulation

2. Mesoporous vaterite CaCO₃ crystals

Synthesis, control over size and porosity

3. Protein particles

One-component compact/porous protein beads

4. Multilayer capsules

Biomolecule encapsulation into finely-tuned polymer shells

5. Polymer scaffolds

Porous 3D scaffold for cell culture and tissue engineering

Porous polymer scaffolds templated on CaCO₃ cores

Paulraj T. et al Macromol Rapid Commun 2014

Porous polymer scaffolds templated on CaCO₃ cores

SEM, cryo-SEM

Paulraj T. et al Macromol Rapid Commun 2014

Cellular adhesion and protein encapsulation

3T3 fibroblasts, 3 days, calcein stained

Microspheres loaded with BSA-FITC by co-precipitation into initial CaCO₃ cores

 $CaCO_3:CaCO_3-BSA = 5:1$

Paulraj T. et al Macromol Rapid Commun 2014

Porous Ca-Alginate Scaffolds (PAS)

<u>CaCO₃ crystals:</u>

- 1. Ca²⁺ source
- 2. Porogens
- 3. Carriers to load the pores with biomolecules trapped in the crystals

Sergeeva, A. et al Advanced Materials Interfaces 2015, Acs Applied Materials & Interfaces 2015, Langmuir 2015

Pore size = CaCO_3 size

Pores are identical to removed particles: gel cross-linking and release of Ca²⁺ ions do not result in pore shrinkage and swelling, respectively

Sergeeva, A. et al Advanced Materials Interfaces 2015, Acs Applied Materials & Interfaces 2015, Langmuir 2015

Pore size = CaCO_3 size

Pores do not swell <u>even if achieved cumulative osmotic pressure</u> induced by both Ca²⁺ ions (estimated as ~10² MPa) and by pore-encapsulated dextrans (5×10⁻³–5×10⁻¹MPa)

Vant Hoff's equation for osmotic pressure $\pi = iCRT^*$

Einstein's equation for biaxial diffusion $x = \sqrt{2Dt}^{**}$

i – Vant Hoffs' factor,

 $_{\pmb{\ast}}$ C – molar concentration (M),

R – absolute gas constant (J mol $^{-1}$ K $^{-1}),$

T – temperature (K).

Osmotic pressure :	π induced if	dissolving	8-µm-CaCO	, particles
--------------------	--------------	------------	-----------	-------------

	π_{max} (t=0 sec), MPa	π_{diffus} (t=1 sec), MPa
CaCO ₃ (Ca ²⁺ ions)	1.3·10 ²	1.3·10 ⁻¹
Dextran ^{FITC} MW 70kDa	5.0·10 ⁻¹	1.8.10-2
Dextran ^{FITC} MW 500kDa	7.2·10 ⁻²	4.9·10 ⁻³

x - distance which ions/molecules can travel within a time t (cm),

*** ****t* - time (s),

D – diffusion coefficient for a given ion/molecule (cm² s⁻¹).

Sergeeva, A. et al Advanced Materials Interfaces 2015, Acs Applied Materials & Interfaces 2015, Langmuir 2015

Acknowledgement

The group

<u>Dr Anna Vikulina (</u>NTU) <u>Dr Marina Vdovenko (</u>IZI-BB) David Sustr (IZI-BB) Natalia Velk (IZI-BB) <u>Natalia Feoktistova (</u>MSU) Siani Kempster (NTU) Jacob Ward (NTU) Jack Campbell (NTU) Danielle Igor (NTU) Chandler Lee (NTU)

Alumni, Visitors

Dr. N. Madaboosi (MPI KG) <u>Dr. Stephan Schmidt (</u>MPI KG) Dr. Katja Uhlig (IZI-BB) <u>Dr. Alena Sergeeva</u> (TU Berlin) Dr Vladimir Prokopovich (IZI-BB) Dr. Borzenkova Natalia (MSU) Dr. Alexey Markin (SSU) Dr. Inna Steciura (SSU) Guy Guday (IZI-BB) <u>Lopes Anna (</u>MSU) Sukh

Nottingham Trent University (UK)

Prateek Singh (IZI-BB) <u>Thomas Paulraj</u> (IZI-BB) Andisheh Motealleh (IZI-BB) <u>Katerina Veselova (</u>IZI-BB) <u>Turton James (</u>NTU) <u>Webster Joseph (</u>NTU) <u>Bell Michael (</u>NTU) <u>Ashwell Ryan (</u>NTU

Fraunhofer IZI-BB (Potsdam)

Moscow State University

Collaborators Dr C. Duschl (IZI-BB), Prof H. Moehwald (MPIKG), Prof G. Sukhorukov (QMUL), Prof D. Gorin (SSU), Dr N. Balabushevich (MSU), etc

Thanks for attention!

€ FP7, Horizon 2020, DFG, RFFI, AvH Foundation (AvH fellowship, SK Award)