MALEIMIDE-FUNCTIONALISED LIPOSOMES AS MUCOADHESIVE VEHICLES FOR DRUG DELIVERY TO URINARY BLADDER

Daulet Kaldybekov, Vitaliy Khutoryanskiy

InEn2017, The Royal Society of Chemistry, London
8th December 2017
Bladder cancer has the 9th highest incidence rate worldwide, with a greater prevalence among men than women.

In the UK:
- 10,100 new cases of bladder cancer in 2014, that’s 28 cases diagnosed every day.
- BC is the 10th most common cancer (2014).
- In males, BC is the eight most common cancer and 14th in females.
Urinary bladder: intravesical delivery

- Normal capacity: 400–600 mL;
- 150–300 mL triggers the urge to urinate;
- Urinary bladder wall is highly impermeable
Intravesical therapy is used only for non-invasive (stage 0) or minimally invasive (stage I) bladder cancers.

Intravesical immunotherapy: Bacillus Calmette-Guerin (BCG)

Intravesical chemotherapy: Mitomycin, valrubicin, doxorubicin, and gemcitabine
Non-toxicity, biocompatible, and completely biodegradable

Increasing drug efficacy

Site avoidance effect

Increasing stability via encapsulation process

Reducing the toxicity of encapsulated drugs
THE COMPOSITION OF LIPOSOMAL FORMULATIONS

<table>
<thead>
<tr>
<th>Liposome formulations</th>
<th>PC (%)</th>
<th>Chol (%)</th>
<th>PEG<sub>2000</sub>-DSPE (%)</th>
<th>PEG<sub>2000</sub>-DSPE-Mal (%)</th>
<th>NaFlu (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>0.773</td>
<td>0.077</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>PEGylated</td>
<td>0.773</td>
<td>0.077</td>
<td>0.075</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>PEG-Mal</td>
<td>0.773</td>
<td>0.077</td>
<td>-</td>
<td>0.075</td>
<td>0.2</td>
</tr>
</tbody>
</table>

![Liposome structures](image)
<table>
<thead>
<tr>
<th>Liposome formulations</th>
<th>Mean diameter (nm)</th>
<th>PDI</th>
<th>Zeta potential (mV)</th>
<th>%EE</th>
<th>%LC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>97 ± 1</td>
<td>0.145</td>
<td>-53 ± 1</td>
<td>53 ± 6</td>
<td>12 ± 1</td>
</tr>
<tr>
<td>PEGylated</td>
<td>85 ± 1</td>
<td>0.217</td>
<td>-32 ± 2</td>
<td>27 ± 2</td>
<td>6 ± 1</td>
</tr>
<tr>
<td>PEG-Mal</td>
<td>86 ± 1</td>
<td>0.224</td>
<td>-37 ± 1</td>
<td>25 ± 2</td>
<td>5 ± 1</td>
</tr>
</tbody>
</table>

PHYSICOCHEMICAL CHARACTERISTICS

![Intense image of liposome formulations](image-url)
Application of mucoadhesive onto a bladder mucosa

Exemplary fluorescent images of the retention of formulations on urinary bladder mucosa

- FITC-chitosan
- PEG-Mal liposomes
- PEGylated liposomes
- Conventional liposomes
- FITC-dextran

0 10 20 40 60 80 100 mL
Retention (%)

Volume of artificial urine (mL)

- FITC-chitosan
- PEG-Mal liposomes
- PEGylated liposomes
- Conventional liposomes
- FITC-dextran

ns

*
Wash Out\textsubscript{50} (WO\textsubscript{50}) values are defined as the volume of liquid necessary to remove 50% of a mucoadhesive material from a substrate.

\textit{Int. J Pharm., 2016, 512, 32-38}
Penetration into bladder mucosa

Exemplary fluorescence microscopy images:

Conventional liposomes

PEGylated liposomes

PEG-Mal liposomes

15 minutes 30 minutes 45 minutes 60 minutes
Penetration (mm) vs. Time (min) for different types of liposomes:

- Conventional liposomes
- PEGylated liposomes
- PEG-Mal liposomes

PEGylated liposomes show significantly higher penetration compared to conventional liposomes and PEG-Mal liposomes at all time points (15, 30, 45, 60 minutes).

Maleimide-terminated PEG liposomes also show increased penetration compared to conventional liposomes, but not as significantly as PEGylated liposomes.
Cumulative release (%) vs. Time (h) for Conventional liposomes, PEGylated liposomes, and PEG-Mal liposomes.
Toxicity – Slug mucosal irritation test

METHOD:

1. Slugs sourced from Harris Garden, UoR

2. Kept in desiccators lined with paper towels soaked with 20 mL of PBS at RT for 48 h

3. Weighed before the experiment
 Filter paper moistened with test materials
 Left to contact for 1 h
 Rinse and wiped
 Re-weighed

Mucus production:

\[MP = \left(\frac{m_b - m_a}{m_b} \right) \times 100\% \]
Positive control

Negative control

Poly(ethylene glycol) methyl ether

pH 7.76 7.66 7.65 7.73

Methoxypolyethylene glycol maleimide

pH 7.29 7.20 7.13 6.92

6-Maleimidohexanoic acid

pH 7.78 7.56 6.93 4.34

Results published in

Acknowledgements

Sponsor:

THANK YOU!