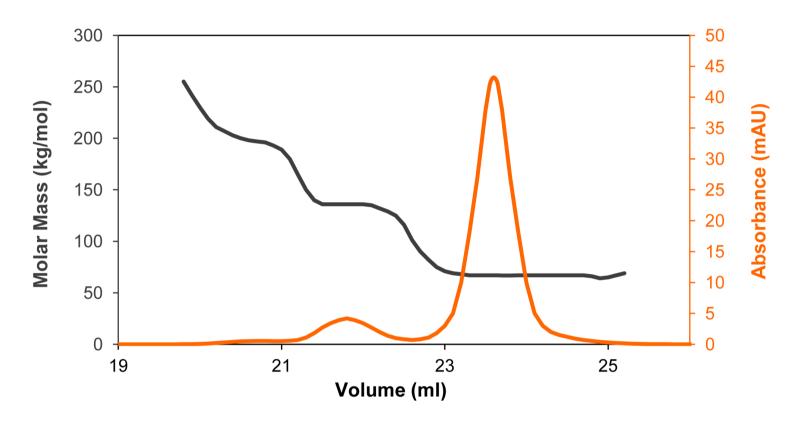


THE SGS M-SCAN CENTRE OF EXCELLENCE IN BIOPHYSICAL ANALYSIS **AN ORTHOGONAL APPROACH TO FORMULATION AND STABILITY STUDIES**


MICHAEL S. CAVES, MARISA C. BARNARD, INIGO RODRIGUEZ-MENDIETA AND MARK I. MILLICHIP SGS M-SCAN, WOKINGHAM, UK

INTRODUCTION

- The use of Biophysical techniques in research and development is increasing rapidly
- ICH Guideline Q6B: 'The higher-order structure of the product is examined using procedures such as circular dichroism, nuclear magnetic resonance (NMR), or other suitable techniques, as appropriate'
- SGS M-Scan offers established GxP compliant absorbance, CD, DSC, AUC and SEC-MALS
- The company has recently extended its range of biophysical techniques, and now offers fluorescence, FTIR and DLS services
- We demonstrate here the application of SGS M-Scan's orthogonal analysis capabilities to the characterisation of biological material

SIZE ESTIMATIONS

FIGURE 1: SEC-MALS OF NATIVE BSA

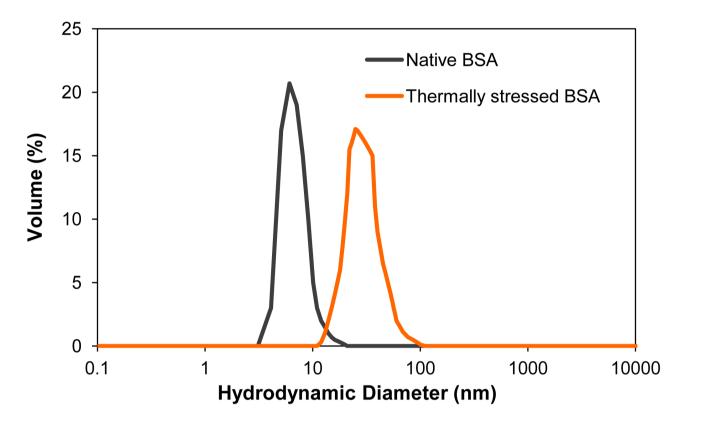
• SEC-MALS (Fig. 1) uses absorbance, refractive index and multi-angle light scattering detection systems • Allows accurate estimation of both the molar mass and relative concentration of each of the SEC-separated entities

TABLE 1: SUMMARY OF SEC-MALS DATA (FIG. 1)

	MONOMER	DIMER	TRIMER
Molar Mass (kg/mol)	65.5	134.6	207.9
Mass Fraction (%)	86.9	11.3	1.8

• AUC (Fig. 2) used to further characterise lower molecular weight oligomers, whilst DLS (Fig. 3) allows detection of trace amounts of aggregated material (Tab. 3)

FIGURE 2: AUC OF NATIVE BSA



	MONOMER	DIMER	TETRAMER	HEXAMER
Sed. Co. (S)	4.4	7.0	11.0	15.0
MW (kDa)	58	119	239	371
% of total	92.4	5.8	1.4	0.4

FIGURE 3: DLS OF NATIVE AND THERMALLY STRESSED BSA – SIZE DISTRIBUTION BY VOLUME

4 0 -2

TABLE 2: SUMMARY OF AUC DATA (FIG. 2)

TABLE 3: DLS OF NATIVE BSA – SIZE DISTRIBUTION BY INTENSITY ANALYSIS

	PEAK 1	PEAK 2
Hydrodyn. Diam. (nm)	8.314	185.8
Intensity (%)	72.3	24.8

HIGHER ORDER STRUCTURE

• A comparability study on IgG in two different formulations is described below

FIGURE 4: FAR-UV CD OF IGG IN PBS AND TRIS FORMULATIONS

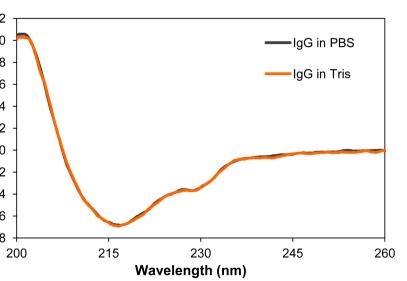
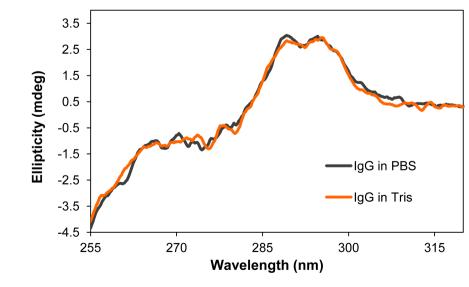
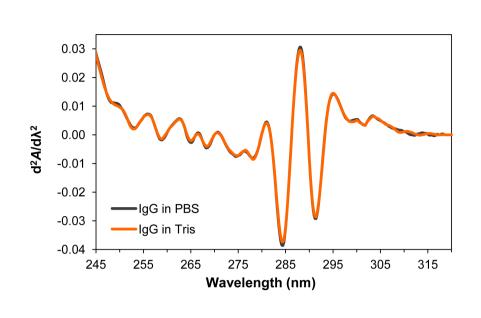




FIGURE 5: NEAR-UV CD OF IGG IN PBS AND TRIS FORMULATIONS

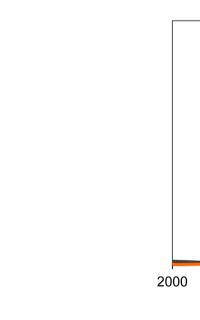

• CD detected no differences in the asymmetry of peptide bonds (Fig. 4) or aromatic residues (Fig. 5) between the materials

FIGURE 6: SECOND DERIVATIVE ABSORBANCE OF IGG IN PBS AND TRIS FORMULATIONS

- environment

FIGURE 8: FTIR OF IGG IN PBS AND TRIS FORMULATIONS

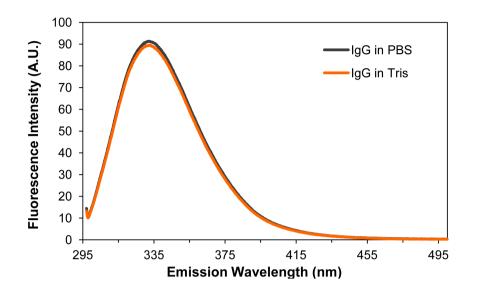
TABLE 4: FACTOR ANALYSIS OF FTIR SPECTRA (FIG. 8)

IgG Formulation	HELIX	SHEET
PBS	15 ± 4	34 ± 2
Tris	5 ± 3	40 ± 2

Tris

FIGURE 9: DSC OF IGG IN PBS AND TRIS FORMULATIONS

Ñ


CONCLUSIONS

REFERENCE

Vermeer, A. W. P. And Norde, W. (2000). Biophysical Journal 78: 394–404

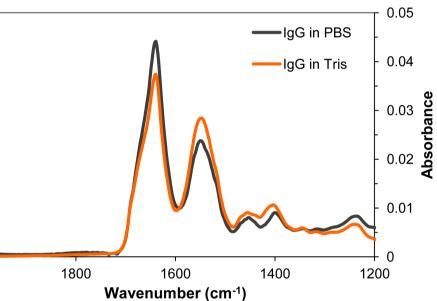
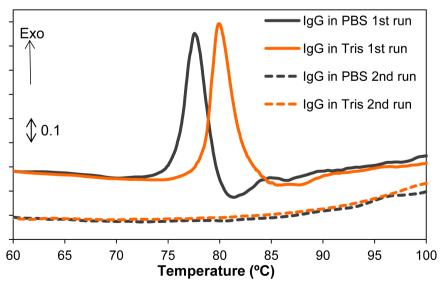


FIGURE 7: INTRINSIC FLUORESCENCE OF IGG IN PBS AND TRIS FORMULATIONS



• Absorbance (Fig. 6) and fluorescence spectroscopies (Fig. 7) detected no differences in aromatic residue

• Nevertheless, FTIR (Fig. 8) demonstrated contrast between the amide-associated hydrogen-bonding pattern of IgG in the two formulations, the β -sheet content in Tris being higher than in PBS

• DSC results (Fig. 9) also show a contrast, the melting temperature of IgG being 78.6 °C in PBS and 81.3 °C in

 IgG in tris contains more sheet and less helix, and is also more stable, than IgG in PBS – consistent with the
previous finding that IgG denaturation involves loss of sheet and gain of helix (Vermeer and Norde 2000) • The rationale behind recent FDA recommendations on the use of an orthogonal biophysical approach to characterise biological materials is substantiated