

Investigating Cohesion in Wet Particles Systems

Raffaella Ocone, School of Chemical Engineering and Physical Science Heriot-Watt University Edinburgh EH144AS, UK

Regime Map for Particle-Particle Interactions

Multi-scale Approach to Particulate Flow – A Regime Map

To understand the bulk properties (meso-scale) we need **RHEOLOGICAL** measurements

Constitutive Requirements

- Chemical bonding
- Ø Electric charging
- Ø van der Waals
- Liquid bridges

- Chemical bonding
- Electric charging
- Ø van der Waals
- Liquid bridges

We deal with particles with size ranging from 10^{-3} to 10^4 mm

- Chemical bonding
- Electric charging
- Ø van der Waals
- Liquid bridges

We deal with particles with size ranging from 10^{-3} to 10^4 mm

7 orders of magnitude!

- Chemical bonding
- Electric charging
- Ø van der Waals
- Liquid bridges

We deal with particles with size ranging from 10^{-3} to 10^4 mm

7 orders of magnitude!

Wet Particles

- When particles are wet or are in a moisture-rich environment, capillary forces may be important: these forces are generated by condensed moisture on the particle surface
- The behaviour of wet particles differs significantly from that of dry particles
- Capillary forces, brought about by what are often referred to as "liquid bridges", are typically stronger than other type of cohesive forces

Inertial Regime

In collaboration with:

Xi Yu and Yassir Makkawi

Proposed Inter-Particle "Cohesive" Model [Ocone et al, 2000]

The radial component of the cohesion force is derived:

$$P_c = C_o \frac{6\sqrt{2}F_{ip}\sqrt{T}}{u_t d} |\tilde{\mathsf{N}}\boldsymbol{e}_s|$$

Based on experimental data on Group A/B particles, we are taking an average value of F_{ip} =0.2X10⁻⁸ N

The tangential cohesion force is given by a modified formula of Molerus (1982):

where C_o is a factor introduced due to uncertainty about the exact value of F_{ip} and F_{ip} is the cohesive force

where C_o is a factor introduced due to uncertainty about the exact value of F_{ip} and F_{ip} is the cohesive force

Examples of Wet Fluidised Beds

Coal/biomass gasification

Surface oil/tar leading to agglomeration and sever Degradation and fluidisation

Simple Gasification Process Graphic (Gas Technology Institute, Illinois, US)

Fluidized bed coating

Liquid presence leading to undesired Agglomeration and particles segregation

hozzle fluidized powder bottom plate fluidizing air

Schemes of fluidized bed spray granulator (Fries et al, 2011)

Exothermic fluidized reactor

Temperature control by liquid injection leading to dead zones And overheating at various Parts Of the reactor

Fluidized Bed Systems, hitachi Zosen Inova, Switzerland)

Slightly Wet Systems

Figure: the different states of saturation of liquid-bound granules

Collisional contacts dissipate energy in both the liquid bridges and particles

Particle-Particle Interactions in Slightly Wet Suspensions

Solid concentration

Hypothesis

<u>Rapid flow</u> Transient contacts dominated by collisional stresses

Dense-intermediate flow Enduring contacts dominate by liquid viscous stresses

<u>Quasi-static flow</u> Enduring contacts dominated by particle frictional stresses

Particle-Particle Interactions in Slightly Wet Suspensions

q In wet particles flow, direct solid-solid

Solid concentration

Hypothesis

<u>Rapid flow</u> Transient contacts dominated by collisional stresses

Dense-intermediate flow Enduring contacts dominate by liquid viscous stresses

<u>Quasi-static flow</u> Enduring contacts dominated by particle frictional stresses

Eulerian Modelling of Dry Granular Flow

Solid phase

continuity equation:

 $\frac{\partial(\alpha_s\rho_s)}{\partial t} + \nabla(\alpha_s\rho_s\vec{u}_s) = 0$

momentum

$$n: \quad \frac{\partial(\alpha_s \rho_s \vec{u}_s)}{\partial t} + \nabla(\alpha_s \rho_s \vec{u}_s \vec{u}_s) = -\alpha_s \nabla P - \nabla P_s + \nabla(\overline{\tau}_s) + \beta(u_g - u_s) + F$$

F

Gas phase

continuity equation:

$$\frac{\partial(\alpha_g \rho_g)}{\partial t} + \nabla(\alpha_g \rho_g \vec{u}_g) = 0$$

momentum:
$$\frac{\partial (\alpha_g \rho_g \vec{u}_g)}{\partial t} + \nabla (\alpha_g \rho_g \vec{u}_g \vec{u}_g) = -\alpha_g \nabla P + \nabla (\overline{\overline{\tau}}_g) - \beta (u_g - u_s) + \nabla (\overline{\tau}_g) + \nabla (\overline{\overline{\tau}}_g) - \beta (u_g - u_s) + \nabla (\overline{\overline{\tau}}_g) - \nabla (\overline{\overline{\tau}}_g) + \nabla$$

Energy equation (granular temperature):

$$\frac{3}{2} \left[\frac{\partial (\alpha_s \rho_s T)}{\partial t} + \nabla (\alpha_s \rho_s T) \vec{u}_s \right] = \left(-P_s \overline{\overline{I}} + \overline{\overline{\tau}}_s \right) : \nabla \vec{u}_s - \nabla (\kappa_T \nabla T) - \gamma_T - J_T$$

Well developed KTGF (kinetic theory of granular flow)

Shear Stress in Particle-Particle Interaction

$$\overline{\overline{\tau}}_{s} = \left(\lambda_{s} - \frac{2}{3}\mu_{s}\right)(\nabla \cdot \vec{u}_{s})\overline{\overline{I}} + 2\mu_{s}\overline{\overline{S}}_{s}$$

solids shear viscosity $\mu_S = \mu_{S,col} + \mu_{S,kin} + \mu_{S,fr}$

 $\mu_{S,fr} = 0$ $0 < \alpha_s < 0.5$ No friction

 $\mu_{S,fr} = \frac{P_S \sin \phi}{2\sqrt{I_{2D}}} \qquad 0.5 < \alpha_s < 0.63 \qquad \begin{array}{c} \text{Particle packing-enduring} \\ \text{contact} \end{array}$

How to present friction shear stress in slightly wet granular flow?

$$\mu_{S} = \mu_{S,col} + \mu_{S,kin} + \mu_{S,fr} + \mu_{wet}$$

Wet shear viscosity
(fluid shear resistance)

How to Modify Solid Stress Model

Solid phase momentum

$$\frac{\partial(\alpha_s \rho_s \vec{u}_s)}{\partial t} + \nabla(\alpha_s \rho_s \vec{u}_s \vec{u}_s) = -\alpha_s \nabla P - \nabla P_s + \nabla(\overline{\overline{\tau}}_s) + \beta(u_g - u_s) + F$$

Energy equation (granular temperature):

$$\frac{3}{2} \left[\frac{\partial (\alpha_{s} \rho_{s} \Theta_{s})}{\partial t} + \nabla (\alpha_{s} \rho_{s} \Theta_{s}) \vec{u}_{s} \right] = \left(-P_{s} \overline{\overline{I}} + \overline{\overline{\tau}}_{s} \right) \nabla \vec{u}_{s} - \nabla \left(\kappa_{\Theta_{s}} \nabla \Theta_{s} \right) - \gamma_{\Theta_{s}} - J_{\Theta_{s}}$$

User Defined Function written in C language

Big Picture

How to incorporate shear stress (based on liquid bridge) in slightly wet particle flow?

Liquid Bridge Stresses

q For this, we may start from the interparticle force at single particle level:

$$\dot{F}_{liquid} = \frac{3}{8}\pi\mu_{liquid}d_p^2\frac{\dot{u}}{h}$$

q Interparticle approach velocity can be estimated from granular temperature:

$$\dot{u}_s = \frac{3}{2}\sqrt{\pi\theta_s}$$

Normal stress

q For this, it is required to determine the force per unit area:

$$P_{liquid} = \frac{9}{16h} \pi \mu_{liquid} \sqrt{\pi \theta_s} \left(\frac{6\alpha_s}{\pi}\right)^{2/3}$$

Equivalent shear viscosity

q Analogue to Coulomb friction law

R

h

$$\mu_{wet} = \frac{\sqrt{2}P_{liquid}\eta}{\left|\bar{\bar{S}}\right|}$$

Liquid Bridge Stresses

q For this, we may start from the interparticle force at single particle level:

$$\dot{F}_{liquid} = \frac{3}{8} \pi \mu_{liquid} d_p^2 \overleftarrow{\dot{u}} \leftarrow \text{Approach velocity} \\ \leftarrow \text{Interparticle gap}$$

q Interparticle approach velocity can be estimated from granular temperature:

$$\dot{u}_s = \frac{3}{2}\sqrt{\pi\theta_s}$$

Normal stress

q For this, it is required to determine the force per unit area:

$$P_{liquid} = \frac{9}{16h} \pi \mu_{liquid} \sqrt{\pi \theta_s} \left(\frac{6\alpha_s}{\pi}\right)^{2/3}$$

Equivalent shear viscosity

q Analogue to Coulomb friction law

$$\mu_{wet} = \frac{\sqrt{2}P_{liquid}\eta}{\left|\bar{\bar{S}}\right|}$$

Liquid Bridge Stresses

q For this, we may start from the interparticle force at single particle level:

$$\dot{F}_{liquid} = \frac{3}{8} \pi \mu_{liquid} d_p^2 \overleftarrow{\dot{u}} \leftarrow \text{Approach velocity} \\ \leftarrow \text{Interparticle gap}$$

q Interparticle approach velocity can be estimated from granular temperature:

$$\dot{u}_s = \frac{3}{2}\sqrt{\pi\theta_s}$$

Normal stress

q For this, it is required to determine the force per unit area:

$$P_{liquid} = \frac{9}{16h} \pi \mu_{liquid} \sqrt{\pi \theta_s} \left(\frac{6\alpha_s}{\pi}\right)^{2/3}$$

Equivalent shear viscosity

q Analogue to Coulomb friction law

$$\mu_{wet} = \frac{\sqrt{2}P_{liquid}\eta}{|\bar{S}|}$$

"Iubrication" coefficient

Criteria to Turn on/off the Effect of Liquid Bridges

q We need to specify a critical interparticle gap distance at which liquid bridges become dominant:

$$\begin{split} P_{liquid} &= \frac{9}{16h} \pi \mu_{liquid} \sqrt{\pi \theta_s} \left(\frac{6\alpha_s}{\pi} \right)^{2/3} & \text{if } h_a < h \leq h_{critical} \\ P_{liquid} &= 0 & \text{if } h > h_{critical} \\ h_{critical} &= 0.8d_p \sqrt[3]{\left(\frac{M_L}{M_S}\right) \left(\frac{\rho_s}{\rho_L}\right)} & \text{Lian et al. (1992)} \\ h_a &= 2 \sim 10 \mu \text{m} \quad \text{particle surface asphericity} \end{split}$$

(1) Lian et al., A theoretical study of the liquid bridge forces between two rigid spherical bodies, Int J. of interface Science, 1992

Void and Inter-Particle Gap Distance Relation

q In randomly packed spheres, the gap distance can be expressed in terms of solid volume fraction⁽¹⁾:

$$h = d_p \left(\sqrt{\frac{1}{3\pi\varepsilon_s} + \frac{5}{6}} - 1 \right)$$

The critical solid fraction at liquid bridge rupture can be estimated once the rupture distance is known

(1) L.V. Woodcock, in "Proc. of a workshop on glass forming liquids", edited by Z. I. P. Bielefeld (Springer Lecture Series in Physics, 277, 1985) p. 113.

Restitution Coefficient of Wet Particles

Experimental Results (ECT) in Dry Particle-Flow

ECT (electrical capacitance tomography) is a diagnostic imaging tool in the medical field

Experimental Results (ECT) in Slightly Wet Flow

In three-phase diagram

Operating conditions: fluidisation velocity=0.8 m/s, bed of 350 mm diameter glass bead, bed weight=3.5 kg, column diameter=15 cm, liquid used is silicon oil (density=969 kg/m³, surface tension=0.0165 N/m and dynamic viscosity=0.4945 kg/(m.s))

Fast Fourier Transform Analysis

Fast Fourier Transform (FFT) analysis of solid fraction fluctuation obtained by ECT measurement in a bubbling fluidized bed (a) dry (b) wet at $\delta = 0.055 \times 10^{-2}$. The solid fraction data represents the spatial average fluctuations at 7.6 cm above the distributor and was produced in a 15 cm diameter column with the bed material consisting of 3.5 kg glass beads fluidized at the gas velocity of 0.8 m/s.

Fluidisation Analysis

(d) Packed solid in case of slugging at δ=0.1×10⁻⁷

Experimental fluidised bed pressure drop at various gas velocities

In highly cohesive powders, the experimentally determined FI was found to be greater than 1.4 (*De Jong et al, 1999*). The model failed to provide a stable solution at $d>0.1 \times 10^{-2}$

Results

Predicted solid shear stress in a slightly wet fluidised bed of 15 cm diameter at the gas velocity of 0.8 m/s and liquid amount of $\delta = 0.1 \times 10^{-2}$

Results

Predicted (a) energy dissipation rate and (b) granular temperature as function of the solid concentration in dry and a slightly wet fluidized bed of 15 cm diameter at the gas velocity of 0.8 m/s

Conclusions

- The proposed model combines theories of liquid bridge forces with the kinetic theory of granular flow (KTGF)
- The model is capable of predicting characteristic hydrodynamic features of slightly wet, non-porous particles in a bubbling fluidised bed
- The experimental measurement produced by electrical capacitance tomography (ECT) have shown distinct hydrodynamic features characterised by bubbles splitting, gas channelling, slugging and de-fluidisation as the liquid presence in the bed increases
- The proposed model allows, for the first time, continuum modelling of slightly wet solid fluidisation, thus extending the existing classic two-fluid modelling beyond its traditional boundaries.

Quasi-Static Regime

Lyes Ait Ali Yahia, Riccardo Maione and Ali Ozel

Shear Test

Evaluation of the stresses needed to generate shear leading to either compaction or dilation states under a given applied normal stress

Shear Test

Evaluation of the stresses needed to generate shear leading to either compaction or dilation states under a given applied normal stress

Automated device
48mm diameter – shear head
18 blads – 2mm height

Shear Test

Evaluation of the stresses needed to generate shear leading to either compaction or dilation states under a given applied normal stress

Automated device
48mm diameter – shear head
18 blads – 2mm height

Constitutive models combining DEM simulations and experimental results

Shear test procedure

Shear head applies a normal stress (s) by moving downward

Shear test procedure

Shear test procedure

Thank you for your attention!

Acknowledgement:

The support from the EPSRC (grant no EP/N034066/1) is kindly acknowledged