ICMAT 2011 D NANOFORMULATION 2011

Nanocomposites Prepared by Ultrasonic Spray Pyrolysis and their Applications

Rongbo Zheng

Southwest Forestry University, China

1. Introduction

One step
Rapidly
Continuous
Scalable

http://www.scs.uiuc.edu/suslick/suslickresearchdescription

Porous Carbon

Precursor:

Alkali metal chloroacetate

or dichloroacetate

K. S. Suslick, J. Am. Chem. Soc., 2006, 128, 12642.

Magnetic luminescent mesostructured silica Microspheres

J. F. Wang, Adv. Funct. Mater., 2008, 18, 2956.

2. Nanocomposites prepared by USP

Schematic of the ultrasonic spray pyrolysis (USP) synthesis of nanocomposites

2.1 Rattle-type carbon hollow spheres and their application in Li-ion battery

Definition: Rattle-type hollow spheres (denoted as A@B)
 refer to hollow shells with a solid particle core and interstitial
 hollow space in between.

Conventional route to A@B

I Inside-to-outside routeII Outside-to-inside route

Sn@Carbon

SEM and TEM images of Sn@carbon obtained via USP of aqueous solutions containing $SnCl_4$ and sodium citrate

R. B. Zheng, J. Phys. Chem. C, 2009, 113, 11065

Formation mechanism

SEM images of carbon hollow spheres obtained by USP of sodium citrate aqueous solutions

TEM images of Sn@carbon solids (A) collected without water at 700 °C and (B) collected with water at 500 °C.

(1): Sn NPs; capillary force; sodium citrate outer shell

- (2): Carbonization
- (3): Removing of water-soluble byproduct

Illustration of the M@carbon obtained via USP of aqueous solutions containing metal salts and sodium citrate

Other M@Carbon by USP

XRD and TEM of (A) Pt@carbon and (B) Ag@Carbon obtained via USP of aqueous solutions containing metal salts and sodium citrate

The applications of Sn@C in Li-ion battery

The cycling performance in the 0 mV-3 V (vs. Li⁺/Li) voltage window at different rate of Sn@carbon (46 wt % Sn).

2.2 Magnetic carbon hollow spheres

Reactant: aqueous solutions containing FeCl₂ and citrate acid

Formation mechanism

XRD patterns of Fe_3O_4 -C magnetic hollow spheres obtained by USP of aqueous solutions containing $FeCl_2$ and citrate acid.

TGA of Fe₃O₄-C magnetic hollow spheres

TEM images of Fe_3O_4 -C magnetic hollow spheres obtained by USP of aqueous solutions containing $FeCl_2$ and citrate acid

R. B. Zheng, Eur. J. Inorg. Chem., 2009, 20, 3003

Porous hollow carbon spheres

TEM images of porous hollow carbon spheres obtained by acid treatment of Fe_3O_4 -C magnetic hollow spheres in concentrated HCl (12 M) for 12 h.

(A) The **M–H hysteresis loop** and (B) **TEM image** of MCHMs after acid treatment (pH = 1) at room temperature for 10 d.

Good dispersibility in various solvents

FTIR spectrum of sample HC 2; (B): **photographs** of sample HC 2 suspensions in methanol, ethanol and tetrachloroethylene.

2.3 Carbon–Iron Oxide Microspheres' Black Pigments and their application in Electrophoretic Displays |▲ ∧

- Carbon black: density, 0.8 g/cm³
- Tetrachloroethylene: density, 1.6 g/cm³

B. Comiskey, et al., Nature, 1998, 394, 253

Doping-eroding route

2.2 g/cm³, 1.7 g/cm³, 1.5 g/cm³

FT-IR spectrum of carbon-iron oxide

Carbon-iron oxide with (from left to right 0, 1, 12 h) etching time are dispersed in tetrachloroethylene.

X. W. Meng, R.B. Zheng, et al, Nanoscale Res Lett 2010, 5,1664.

2.4 Silver porous hollow spheres

SEM of SPHS prepared via USP of aqueous solutions containing glucose and AgNO₃

R.B. Zheng, Applied surface sci., 2011, 257, 2367

Thanks for your attention !!!