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Dense suspension

Cornstarch mixed with
water at high solid Video from ETH Soft Materials Youtube channel
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Industrial importance
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aggregates and need to be broken up
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Future Formulations:
Taming Dense
SUSPENSIONS

John Royer

Future Formulations Meeting, Durham May 2017
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Previous focus - Hydrodynamics

‘Hydroclusters’

VWagner, Brady Phys.Today 2009




Previous focus - Hydrodynamics

‘Hydroclusters’
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Real Shear Thickening

Thickening increases strongly
with solids concentration,
becomes discontinuous.
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Shear Thickening - Jamming below RCP

g *

Shear Stress

Guy, Hermes & Poon, PRL 2015
Wyart and Cates, PRL 204
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Shear Thickening - Jamming below RCP

‘Random close
packing” for
frictionless spheres

g *
Shear thickened
viscosity diverges
earlier

Shear Stress

1074 103 102 107
Static Friction u

Silbert, Soft Matter 2010

Guy, Hermes & Poon, PRL 2015
Wyart and Cates, PRL 204




Shear Thickening and Friction
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Simulations with stress activated
frictional contacts
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Shear Thickening: A friction-driven transition

Agreement with analytical models Agreement with simulations
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Current Core Team

Experiments
John Royer (CF). surface coatings, particle interactions

James Richards (PhD student): unsteady flow,
attractive systems

Yujie Jiang (PhD student). suspensions in complex
backgrounds H

Rory O’Neil (postdoc): channel flows and extrusion |" gl

Jose Ruiz Lopez (Strathclyde): squeeze flow /
extensional rheoclogy

Simulations - =

Julien Sindt (postdoc): attractive and poly-disperse
systems

Rangarajan Radhakrishnan (postdoc):

extensional/channel flow,
shear thickening and LAOS




Describing Time-Dependent and Unsteady
Flows




Frictional particle

Adding Attraction

Frictionless attractive shell

Experimental results
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Major Underlying Themes

* How to maximise ¢
* Interplay between friction and attraction

* Building in complexity (flow geometry, polydispers
shape, non-newtonian background ...)

* From lab to factory (extracting process-relevant
information, developing predictive models ...)

Johnson Matthcy




