Predictive formulation of highsolid-content complex dispersions

Jin Sun Wilson Poon and John Royer Mark Haw

Dense suspension

Cornstarch mixed with water at high solid concentration

Video from ETH Soft Materials Youtube channel

Shear thickening

Industrial importance

Drilling fluids

Washcoat on for catalyst

Industrial importance

Paste extrusion

Characterisation of particle and HSCD using rheometry

Prediction of flow and product properties

Control

Particle surface modification

Formulation of **High-Solid Content Dispersions** Continuous

Industrial processes

Product

phase properties

Designer HSCD

Manufacturability

Research programme

Solid volume fraction $\phi \approx 0.5$

- Solid volume fraction $\phi \approx 0.5$
 - shear thickening at high shear

- Solid volume fraction $\phi \approx 0.5$
 - shear thickening at high shear
 - jamming and unsteady flow

- Solid volume fraction $\phi \approx 0.5$
 - shear thickening at high shear
 - jamming and unsteady flow

- Solid volume fraction $\phi \approx 0.5$
 - shear thickening at high shear
 - jamming and unsteady flow
- - van der Waals force almost impossible to turn off completely

- Solid volume fraction $\phi \approx 0.5$
 - shear thickening at high shear
 - jamming and unsteady flow
- - van der Waals force almost impossible to turn off completely
 - yield stress at low shear

- Solid volume fraction $\phi \approx 0.5$
 - shear thickening at high shear
 - jamming and unsteady flow
- - van der Waals force almost impossible to turn off completely
 - yield stress at low shear
 - aggregates and need to be broken up

- Solid volume fraction $\phi \geq 0.5$
 - shear thickening at high shear
 - jamming and unsteady flow
- - van der Waals force almost impossible to turn off completely
 - yield stress at low shear
 - aggregates and need to be broken up

Future Formulations: Taming Dense Suspensions

John Royer

Future Formulations Meeting, Durham May 2017

Video from ETH Zurich Soft Materials youtube channel

Video from ETH Zurich Soft Materials youtube channel

Video from ETH Zurich Soft Materials youtube channel

Ubiquitous in dense suspensions of hard particles

But until recently, poorly understood!

Video from ETH Zurich Soft Materials youtube channel

Ubiquitous in dense suspensions of hard particles

But until recently, poorly understood!

Previous focus - Hydrodynamics

'Hydroclusters'

Wagner, Brady Phys. Today 2009

Previous focus - Hydrodynamics

'Hydroclusters'

Real Shear Thickening

Thickening increases strongly with solids concentration, becomes discontinuous.

$$\eta=rac{\sigma}{\dot{\gamma}}$$

Characteristic onset stress σ* independent of solids concentration.

$$\phi = \frac{V_{part}}{V_{total}}$$

Guy, Hermes, Poon, PRL 2015 Royer, Blair, Hudson PRL 2016

Guy, Hermes & Poon, PRL 2015 Wyart and Cates, PRL 2014

"Random close packing" for frictionless spheres

Guy, Hermes & Poon, PRL 2015 Wyart and Cates, PRL 2014

Guy, Hermes & Poon, PRL 2015 Wyart and Cates, PRL 2014

Guy, Hermes & Poon, PRL 2015 Wyart and Cates, PRL 2014

Shear Thickening and Friction

Simulations with stress activated frictional contacts

Shear Thickening: A friction-driven transition

Agreement with analytical models

Wyart and Cates PRL, 2014
Guy, Hermes & Poon, PRL 2015

Agreement with simulations

Ness and Sun, Soft Matter 2016 also work by R. Mari, R. Seto, J. Morris

Shear Reversal experiments show contacts dominate

Lin, Guy, Hermes, Ness, Sun, Poon, Cohen PRL 2015

Current Core Team

Experiments

John Royer (CF): surface coatings, particle interactions

James Richards (PhD student): unsteady flow, attractive systems

Yujie Jiang (PhD student): suspensions in complex backgrounds

Rory O'Neil (postdoc): channel flows and extrusion

Jose Ruiz Lopez (Strathclyde): squeeze flow / extensional rheology

Simulations

Julien Sindt (postdoc): attractive and poly-disperse systems

Rangarajan Radhakrishnan (postdoc):

extensional/channel flow, shear thickening and LAOS

Describing Time-Dependent and Unsteady Flows

Adding Attraction

Experimental results

Simulation results

Complex Flow Geometries

Simulations

Complex Flow Geometries

Simulations

Major Underlying Themes

- How to maximise Φ
- Interplay between friction and attraction
- Building in complexity (flow geometry, polydispers) shape, non-newtonian background ...)
- From lab to factory (extracting process-relevant) information, developing predictive models ...)

