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Designs feed into “real” problems

e Catalysts
* Homogeneous
* Heterogeneous

e Electronic materials
 Photoelectric
 Magnetic

* Coatings
e Abrasion and UV resistant

* Energy
e Solar cells
 H2 Storage
e Fuel cells

Personal Care
e Topical drugs



l. Planar Experiments

e Electronic, magnetic
and similar materials

e Key elements

e “resolution”: pixel size
of sensor

* Ingenious methods of
overlaying materials



Il. Physical Mixing

* Most other applications
e Chemspeed
* HTE

 Unchained Labs

* Freeslate
* Symyx
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Objectives

Business Technical
e Who are your customers? * Unbiased
e What is the flow of customer ’ D_On t pr.e—solve problem
needs from the ultimate * Diverse input
customer to you? e Success clearly defined
e What are the goals for each * Specific
specific customer need? e Measurable
e« What is their priority? e Practical consequence

How are those goals measured?

What is the specification for
success?

Management Discussion =) RESOURCES



Design Elements

* Factors * Responses
* Types * Types
* Quantitative * Quantitative
e Qualitative e Ordinal
e Formulation  Count
 Normal Levels * Binary
* Setting Error * Expected ranges
e Proposed settings * Precision and Accuracy

* Relationship to objective



Conventional Experimental Spaces

Curvature is moderate; Equations
are continuous

Space is relatively smooth

e Factors are ordered Preferably binary or real

2-way and quadratic

Simple interactions

e Factor reduction early in program
by simple screening experiments

Not too many dimensions.




High Throughput Spaces

e Phase diagram space

e Combinatorial Space

e High-Interaction space

e High dimensional spaces
e Split-Plot Space

e Organic Chemical Space

e Space isn’t smooth (phase transitions)

e Factors are not ordered (qualitative )

3-way and higher interactions

Cannot eliminate factors early

Process/Formulation Interactions

The Pharmaceutical world



Approaches to high throughput spaces

“Standard”DOE
e DOE of DOF’s

* Principal Components

* Split Plots

Pruned Combi
e Brainstorm

e Deconstruct

e Prune

* Design

Machine Learning

e Random Initiation

 Artificial Intelligence

Genetic Algorithm
Neural Net
Nondominated Sort
Pareto Tools
Clustering

Bayesian Network
Kriging



DOE of DOE’s: 576 total runs

Catalyst formulation:

3 factor 18 run RSM design
Process Conditions:
32 run 6 factor RSM
Design

Process model as f (conditions)

F—LO& |

0 Pt (% wiw) 1

Model process coefficients as f (formulation)

Hendershot, Lauterbach et. al. (2007)




Principal Components in Chemical Space

”Descriptors” Design
e Physical factors e PCA: reduce dimensionality
* bp, density, bond length e Select representative

lipophilicity, polarizability,

charge, flexibility, rigidity... compounds for “DOE

e Calculated factors

e electron density, solubility
parameters, solvent polarity
parameters...



“Pruned” Combi: Solid State Lighting

Business Opportunity

sunlight

standard LED

— Phosphors are critical to markets ranging

from lighting to medicine applications.

— Conventional phosphors: difficult to
produce & handle, environmentally unstable
due to heat & moisture.

— Need to develop new phosphors for natural

spectrum.

— Challenges: new matrices, host materials,
deposition & environmental considerations.

— 2015 Lighting Market $2508B;
Encapsulant/Phosphor $230M



Initial Experimental Factors

= - o 7= N

Ligand:Eu Salts
Primary Metals, M1
Secondary Metals, M2
Siloxanes

Ligands

Solvents

Ligand/Eu ratio

Ln/M1 ratio

Total Metal (Ln+M1+M2)
Water

Temperature

Pressure

Qualitative
Qualitative
Qualitative
Qualitative
Qualitative
Qualitative
Quantitative
Quantitative
Quantitative
Quantitative
Quantitative

Quantitative

Various Salts

Ti, Zr, Al, ...

Lanthanides (Ln), Non-Ln
MDTQ Resins

Hundreds (?)

Different Solvents

mol% range
mol% range
mol% range
mol% range

mol% range



Experimental Factor Deconstruction

Qualitative Formulation Quantitative Formulation Process
racors [ evss [ rocors—[ievts [l rocors vl
Ln Salts 3 Ln Salts mol% range Water % range
M2 1 M2 1 Temp range
M1 3 M1 mol% range Pressure range
Siloxanes 2 Siloxanes mol% range Dwell range
Ligands 100 Ligands mol% range Heat Rate range

o
+ o

All Combinations: 1800 11 run mixture 16 run Fractional Factorial

1800 x 11 x 16 = 316,800 possible runs



Experimental Factor Reduction

Qualitative Formulation Quantitative Formulation Process

Ln Salts 3 Ln Salts mol% range
M2 1 M2 1

M1 3 M1 mol% range
Siloxanes 2 1 Siloxanes mol% range
Ligands 100 Ligands mol% range
Selvents 1

All Combinations: 900 9 run mixture

900 x 9 x5 =40,500 possible runs

Water % range
Resin %+ange
Temp range

Pressure range
Dwell range
HeatRate range

5 run Fractional Factorial



Experimental Design Space Reduction

Qualitative Formulation Effect Type Optimal Design Size
CECTE
Ln Salts Ln Salts Main | 104 | |
M1 3 M1 Main - to
Ligands 100 Ligands Main 300 1504
900 combinations Ln * M1 2-way d —6th - 900
Quantitative Formulation Ln® Ligands 2-way
M1*Ligands 2-way
Ln*M1*Ligands  3-way i

Process

504 x3x1 =1,512 possible runs



Is the Experimental Design Robot-
Efficient?

Statistically “idea

III

random plate

A B C D E F G H

Eul Eul Eul Eul Eul Eul Eul Eul
L22 L4 L11 L19 L15 L9 L42 L28
Mlc | Mla | Mlb | Mlc | Mlc | Mla | Mlb | Mlb

Eul Eul Eul Eul Eul Eul Eul Eul
L32 L2 L37 L6 L44 L24 L20 L39
Mla | Mla | Mlb | Ml1b | Mlc | Ml1b | Mla | Mla

Eul Eul Eul Eul Eul Eul Eul Eul
L18 L16 L14 L43 L26 L12 L13 L29
Mlb | Mla | Mlc | Mla | Mlb | Mlc | Ml1b | Mla

Eul Eul Eul Eul Eul Eul Eul Eul
L30 L33 L36 L1 L5 L10 L25 L8
Mlc | Mlc | Mlb | Mlb | Mlb | Mla | Mlc | Mla

Eul Eul Eul Eul Eul Eul Eul Eul
L23 L21 L27 L34 L40 L35 L41 L31
Mlb | Mlc | Mlc | Mlb | Mla | Mlb | Mlc | Mlc

Eul Eul Eul Eul Eul
L3 L17 L7 L38 L45 | STD | STD | STD
Mlc | Mla | Mlc | Mla | Mla




A Robot-Efficient Experimental Design

T «“ »”
Statistically “Ideal” Random Plate Blocked by Plates and Rows
A B C D E F G H A B C D E F
Eul Eul Eul Eul Eul Eul Eul Eul Eul Eul Eul Eul Eul

1 L22 L4 L11 L%9#‘ 4(%15 L9 L42 L28 L22 L4 L11 L19 L15
Mlc | Mla | Mlb | MIc 1lc | Mla | M1b | Mlb Mla | Mla | Mla | Mla | Mla

o ¥

Eul Eul Eul 4| ®u1 Eul Eul Eul Eul Eul Eul Eul Eul

2 L32 L39 L32 L2 L37 L6 L44
Mla Mla | Mla Milb | Mlb | M1b | Ml1b | Mlb
Eul Eul Eul Eul Eul Eul Eul

3 L18 L29 L18 L16 L14 L43 L26
M1b 1b | Mla Mlc | Mlc | Mlc | Mlc | Mlc
Eul Eul Eul Eul Eul Eul Eul

4 L30 L8 L30 L33 L36 L1 L5
Mlc Mlc | Mla Mlc Mlc Mlc Mlc Mlc
Eul Eul Eul Eul Eul Eul Eul

5 L23 L31 L23 L21 L27 L34 L40
M1b Mlc | Mlc Mlb | Mlb | M1b | M1b | Mlb
Eul Eul Eul Eul Eul Eul Eul Eul Eul Eul

6 L3 L17 L7 L38 L45 | STD | STD | STD L3 L17 L7 L38 L45
Mlc | Mla | Mlc | Mla | Mla Mla | Mla | Mla | Mla | Mla

Not Ideal... but it will get done!




Machine Learning: GA’s, NN’s,
etc.

Advantages

GA/NN: Baerns & Holena  * Many optimization paths in
parallel

e Bayesian Net: Poli _ ,
e Less attraction to local optima

Cluster Analysis: Bible e Deals with “sparse” sampling and

* Genetic Programing: high dimensions
Chakraborti



The first problems...

e Complexity
* Mathematical sophistication
e Statistical knowledge
e Familiarity with MATLAB or similar

e Overfitting

Regression Model



The Chemist’s GA problem...

Support
Dopants ]
. -
19 =|010011 010100| = 20 c°n’§;},“,§§ms A'goa =
Cross-over ol % Sio,
:- Vanadia P; 1 w .Ti.OZ 0
= — Phosphate 1 = PM 1
12 ={001100 001011 = 11 ¥ - =1
Mo 1 X = Ru 0
Cu 1 A |I’ 1 X =
12=[001100] —— [101011|=43 i 5 PMLS
Nb
" 1 X =
, sb 0
Standard GA’s are based on Li 1 X =
" ” . Ca 0
gene” structures with Preparation | 9
Mode (PM)

binary encoding

Chemistry must be described with
“chromosome” structures and
much more complex encoding

“Catalyst Description Language”
Berns, Holeria, Cat. Sci. Series 7, 2009



Predictive Design Technology

e \Web-based service

e Predicts optimal
experiments by modeling

e Closed-loop iteration

* Intelligent selection of
machine learning options

e Can exploit chemical
information

www.protolife.com



Thank you!

And thanks to:

GE Global Research
Protolife Inc.

Dow Corning Silicones
Chemspeed

Cawse and Effect LLC

www.cawseandeffect.com
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