Nanoencapsulation by Interfacial Polymerisation

Lionel Petton Innovations in Encapsulation 2017

Agfa-Gevaert Group

- Founded in 1867, IPO in 1999 (Brussels)
- Headquartered in Antwerp, Belgium
- Sales of EUR 2.537 billion in 2016
- 10,360 employees (FTEs) worldwide
- Wholly owned sales organizations in more than 40 countries
- 25 R&D and production sites around the globe
- Global market leader in each of its divisions

Encapsulation at Agfa-Gevaert

An old history to build upon: First patents filed in 1962

PATENT SPECIFICATION NO DRAWINGS

1034437

Date of Application and filing Complete Specification Feb. 20, 1963. No. 6860/63.

Application made in Netherlands (No. 275045) on Feb. 20, 1962.

Complete Specification Published June 29, 1966.

C Crown Copyright 1966.

Index at acceptance: ---B8 CA Int. Cl.:---A 61 j 5/00

COMPLETE SPECIFICATION

Preparation of Microcapsules

We, GEVAERT PHOTO-PRODUCTEN N.V. a the oil with only one gellable hydrophilic Belgian Company of Mortsel-Antwerp, Belgium, do hereby declare the invention, for which we pray that a patent may be granted 5 to us, and the method by which it is to be performed, to be particularly described in sule-forming colloid material is gelled by and by the following statement:---

colloidal sol whereupon coacervation occurs 45 by adding a strongly concentrated salt solution to the emulsion. The colloid material is deposited around the oil droplets and the capcooling. 50

Encapsulation Methods

Rao, J. P.; Geckeler, K. E., *Progress in Polymer Science* **2011**, *36* (7), 887-913.

Patent Landscape

PatBase Search (1/12/17): *encapsulation and (interfac* w1 polymeri?ation)

International Patent Classification (IPC): Application Fields

Encapsulation: Interfacial Polymerisation

• Advantages:

- Good encapsulation degree
- Can obtain a shell from a polymer not soluble in common solvents
- Crosslinked capsules possible
- Core-shell morphology
- Disadvantages:
 - Reactive chemistry
 - Residual monomer
 - Not always compatible with ingredients to be encapsulated

Encapsulation: Interfacial Polymerisation

Encapsulation: Interfacial Polymerisation

Process:

- 1. Oil phase:
 - Active product
 - Monomer (e.g. isocyanate)
 - Solvent (e.g. ethyl acetate)
- 2. Emulsification:
 - Oil in water (O/W)
 - Dispersing agent(s)
- 3. Solvent evaporation
- 4. Interfacial polymerisation

Nanoencapsulation

- Often in literature Microcapsule = Nanocapsule
 - 1 μm < Microcapsules < 100 μm
 - 1 nm < Nanocapsules < 1 μm (EU definition: nano < 100 nm)
- Why nanoencapsulation?
 - System constraints
 - Optical properties
- How?
 - Intensive emulsification process
 - High dispersing agent concentration

Laser Marking

Laser Marking: Concept

○ Capsule containing a leucodye (furan dye):

■ Developer: Acid (e.g. zinc 3,5-bis(α-methylbenzyl) salicylate).
▲ Infrared Absorber: e.g. carbon black or cyanine dye

Laser Marking: Capsules

Capsule shell formed by interfacial polymerisation:

isocyanate + amine \rightarrow polyurea shell (linear or cross-linked)

$$OCN^{-R}NCO + H_2N^{-R'}NH_2 \longrightarrow \begin{pmatrix} O & O \\ & & & \\ & &$$

Laser Marking: Capsules

Laser Marking: Capsules

Inkjet Inks

Inkjet Inks

- Print head nozzle $\rightarrow 20-50~\mu m$ diameter
- Low viscosity \rightarrow 1 15 mPa.s at jetting temperature
- Colloidal stability and rheology critical

Print head nozzle

Ink Jetting

Inkjet Inks: Self-Dispersing Capsules

Core: Blocked isocyanate

- Improved ink adhesion after thermal treatment (100 °C 160 °C):
 - Capsule breaks-up
 - Reactive isocyanate generated in-situ

Inkjet Inks: Self-Dispersing Capsules

- Shell
 - Self-dispersing: reactive surfactant copolymerised with isocyanate

Encapsulation by Interfacial Polymerisation

A versatile tool

Thanks

- Fabienne Goethals
- Johan Loccufier
- Amandine Ligot

