Dilute-solution properties of biomacromolecules as indicators of macromolecular structure and interactions

José García de la Torre,

Departament of Physical Chemistry University of Murcia, Spain

jgt@um.es http://leonardo.inf.um.es/macromol

Our goals...

Development of theoretical schemes, computational tools for:

- Prediction
- *RIGID*: (rigorous-HI rigid-body hydrodynamics): HYDRO++, HYDROPRO, HYDROSUB, HYDRONMR, etc
 FLEXIBE: MONTEHYDRO (Monte Carlo), BROWFLEX (rigorous-HI

Brownian dynamics simulation)

Analysis: Single- , Multi-HYDFIT , HYDROFIT, ...

(Also, experimental work: analytical ultracentrifugation, capillary viscometry, rheometry, multi-detection SEC, DLS+Z-potential., ...)

Solution viscosity, η . Intrinsic viscosity, [η]

Concentration dependence of η ??? Series (polynomial) expansion :

$$\eta = A_0 + A_1 c + A_2 c^2 + A_3 c^3 + \cdots$$

Solvent viscosity:
$$A_0 = \eta_0$$
 $[\eta] = \frac{A_1}{\eta_0}$ Huggins const.: $k_H = \frac{A_2}{\eta_0[\eta]^2}$
 $\eta = \eta_0 + \eta_0[\eta]c + \eta_0k_H[\eta]^2c^2 + ...$
Reduced viscosity $\eta_{red} = \frac{\eta - \eta_0}{\eta_0c}$
 $\eta_{red} = [\eta] + k_H[\eta]^2c + ...$
Intrinsic viscosity $[\eta] = \lim_{c \to 0} \eta_{red}$
Some lgG1 antibody: $[\eta] = 7.0 \text{ cm}^3/\text{g}$; $k_H \cong 0.8$

Our goals...

Development of theoretical schemes, computational tools for:

- Prediction
- *RIGID*: (rigorous-HI rigid-body hydrodynamics): HYDRO++, HYDROPRO, HYDROSUB, HYDRONMR, etc
 FLEXIBE: MONTEHYDRO (Monte Carlo), BROWFLEX (rigorous-HI

Brownian dynamics simulation)

Analysis: Single- , Multi-HYDFIT , HYDROFIT, ...

(Also, experimental work: analytical ultracentrifugation, capillary viscometry, rheometry, multi-detection SEC, DLS+Z-potential., ...)

Rigid-body hydrodynamics: Bead and shell models

Particle modeled as an array of N spherical elements (beads). Size and shape of the particle is reproduced by the model.

Bead model (*in strict sense*)

Shell model *bead-shell model*

Program HYDRO++

TRV, c.a. 1980; Biophys. J, 1994; J. Phys. Chem, 2007.

Example: Human antibody molecule IgG3: Davies...Burton et at, *Molec*. *Immunology* (1984)

Antibody Igg3	!Title		
hydroigg3	!output files		
hydroigg3.dat	!Structural filename		
293.	!Temperature, Kelvin		
0.010	Solvent viscosity		
158000.	!Molecular weigth		
0.760	!Specific volume		
1.0	Solution density		
(distances, scattering, covolume-A2,)			
* !	End of file		

hydroigg3.dat

1.E-07,	!Unit	of lengt	h (10 A)
15,	!Numbe	er of bea	ds
-12.9000	0.0000	0.0000	2.05
-8.8	0.	0.	2.05
-6.0	0.	0.	0.75
-4.5	0.	0.	0.75
-3.0	0.	0.	0.75
-1.5	0.	0.	0.75
0.	0.	0.	0.75
0.5	0.	0.8660	0.25
0.75	0.	1.2990	0.25
0.5	0.	-0.8660	0.25
0.75	0.	-1.2990	0.25
1.9	0.	-3.2909	2.05
3.95	-3.5507	-3.2909	2.05
1.9	0.	3.2909	2.05
3.95	3.5507	3.2909	2.05

Output of HYDROxxx programs: HYDRO++ for IgG3

hydroigg3-res.txt

Also:

- * Scattering function
- * Distances distribution
- * SAXS, SANS
- * covolume, 2nd virial

Translational diffusion coefficient: 3.757E-07 cm2/sStokes (translational) radius: 5.711E-07 cm 7.492E-07 cm Radius of gyration: Volume: 2.256E-19 cm³ Rotational diffusion coefficient: 5.946E+05 s-1 Harm. mean relax. (correl.) time: 2.803E-07 s 4.395E-07 s Relaxation time (1): Relaxation time (2): 3.503E-07 s Relaxation time (3): 3.343E-07 s Relaxation time (4): 2.058E-07 s Relaxation time (5): 2.057E-07 s Intrinsic viscosity: 9.823E+00 cm3/q Sedimentation coefficient: 5.850E+00 svedberg

HYDROPRO (Biophys. J. 2000; Biophys. J. 2012)

HYDROPRO:

** Tipical accuracy: usually better than:

✤ 4% for Rg, and translational properties (diffusion, D; sedimentation, s; Stokes-hydrodynamic radius, a_T)

♦ 10% for intrinsic viscosity [η] (4% for Einstenian-hydrodynamic radius, a_I)

** Computing time: a few seconds, in a simple PC

** Applicability:

◆ > 500 literature references to *Biophys J* 2000 (first version)
◆ > 40 literature references to *Biophys J* 2012, published Nov. 2012 (last version)

"Crystallohydrodynamics" approach: HYDROSUB

Harding, Garcia de la Torre et al, Biophys.Chem (2001) A. Ortega A., J. García de la Torre, "Crystallohydrodynamics of IgG". In Roberts G. (Ed.) *Encyclopedia of Biophysics* (2013)

Too simple...

Too much detail... ... or not available.

Subunits: represented as ellipsoids or cylinders

Dimensions (2a,2b) or (L, d) from solution properties: *D*, *s*, *Rg*, $[\eta]$... and simple theoretical expressions.

□ Solution properties:

- Experimentally determined
- Predicted from available crystal structures (HYDROPRO)

HYDROSUB – MultiSUB - HYDROFIT/ Antibodies (1)

- a) Suite of HYDROxxx programs: Rigid particles of arbitary shape, bead/shell models. Userconstructed model -- <u>HYDROSUB</u>
- b) MULTIxxx : Programs for multiple model construction (changing structural parameters), produce HYDROxxx input files --<u>MULTISUB</u>

c) HYDROFIT : Fit experimental data / Optimize structural parameters using calc./exptal.-deviation, target funcion $\Delta(\{\text{params}\})$ $\Delta(L_h, \beta, \phi)$

HYDROSUB / HYDROFIT Antibodies (2)

IgG3 - Exptal. Data: $M, s, D, Rg, [\eta]$ Target: $\Delta(L_h, \beta)$ 1. WT, wild type2. M15, mutant

Amorós, Hardíng and García de la Torre, Eur. Biophys. J (2010)

The wormlike chain

- Persistence length, *P*
- Hydrodynamic diameter, *d*

P and *d* are characteristic of the macromolecule; e.g. $P \cong 50$ nm, $d \cong 2$ nm for double-helical B-DNA

L is related to molecular weight: $L = M / M_L$, $M_L = 1950$ Da/nm for DNA

Aspect / Conformation; Limits: ** L >> P, x = L/P >> 1, very large: fully flexible coil ** L << P, x = L/P << 1, very small: nearly rigid rod

Wormlike chains : Good fit for 147 data points !!! DNA from 8 to 200 000 base pairs !!!

Amorós, Ortega and García de la Torre, Macromolecules (2012)

30

40

50

Persistence length, a / nm

60

70

80

Figure 3. Plots of the experimental and calculated values, with $a = 56 \text{ nm}, d = 2.3 \text{ nm}, \text{ and } M_L = 1950 \text{ Da nm}^{-1}$ for the four prope of DNAs.

Intrinsically disordered proteins: ZipA

D. Amorós, A.Ortega, J. Garcia de la Torre "Prediction of hydrodynamic and other solution properties of partially disordered proteins with a simple, coarse-grained model" *Journal of Chemical Theory and Computation*, 9, 1678-1685 (2013).

Structure

- Globular domain: 140 aa's
- Flexible tail: 183 aa's

Simulation vs. experimental results

Accurate exptal. sedimentation coeff. from SV :

s = 2.2 S

G. Rivas, personal communicaton;

Oshashi et al. J. Bacteriology. 184 (2002)

Calculated:

** BROWFLEX Brownian dynamics

** MONTEHYDRO Monte Carlo

s = 1.9 - 2.1 S

Intrinsically disordered proteins Burton tyrosine kinase (BTK)

659 residues: 4 globular domains, 3 linkers
PH/169 - linker/50 - SH3/55 - linker/7 - SH2 - linker/21 - Kin/258

Experimental: Márquez,...Svergun *EMBO J* (2003)

Results

Rg : exptal / calc -- 50 / 47 Å s : exptal / calc -- 3.9 / 3.3 S

Not-so... / semi... / dilute solutons

Molecular weight from non-very-dilute solutions

$$\frac{1}{M_{app}} = \frac{1}{M} + \xi Bc + \cdots$$
 2nd virial coeff.: $B = B_{exc} + B_{elect}$

 $\xi:$ =1, Osmom. ; =2 LS, SE Abs. or Rayleigh; =4 SE Schlieren,...

No charge or high salt: $B \approx B_{exc} = \frac{uN_A}{2M^2}$

Spherical particles: $u = \frac{4}{3}\pi d^3$

 u, B_{exc} for rigid particles of arbitrary shape: Calculated in all HYDROxxx programs.

Garcia de la Torre, Harding and Carrasco Eur Biophys J 1999.

Related to conc.-dependence of other properties

$$D_{app} = D(1+k_dc)$$
 $\frac{1}{s_{app}} = \frac{1}{s}(1+k_sc)$ $\frac{\eta_{sp}}{c} = [\eta](1+k_Hc)$

Harding and Johnson, Biochem J 1985 : $k_d=2BM-ar{v}-k_s.$ What about k_H ???

u : molecular covolume

Table 1 Values of k_H for several systems

System	k _H
Flexible chains	
In good solvents	0.2-0.4
In good solvents, theory	0.76
In theta solvents	0.4-0.7
In theta solvents, theory	0.6
Denaturated proteins	0.3-0.5
Oligometic propylene glycol $M = 130-940$ g/mol	0.9-0.5
Poly(isobutylene) $M = 5,000 \text{ g/mol}$	1.0
Globular particles	
Spheres (uncharged) theory	0.69-0.80
Silica spheres	1.0
Haemoglobin	0.81-0.93
Bovine serum albumin	0.89-1.42
Wormlike particles (from rod to coil)	
Xanthan polysaccharide	0.40-0.50
Schizophyllum commune polysaccharide	0.39-048
Poly(hexyl isocyanate)	0.39-0.59
Non-globular (multidomain) particles	
IgG antibody	0.74-0.84
Phycocianin (hexameric)	0.3
Myosin A	0.31
Fibrinogen	1.2
Aggregating, interacting macromolecules	
Folch-Pi protein	1.4, 8.4,
IgG heteropolymer	0.6
Schizophyllan native/renaturated	0.2-0.6/1.6
Carboxymethylcellulose in acetonitrile-water-salts	2-25
Urease (polymerising)	40
Neurophysin	3
Silica rods	3.5-4.2
Chondroitin sulfates (possibly aggregating) $I = 0.15 \text{ M}$	0.004-0.24
Rodlike particles	
Theoretical	0.75
Theoretical	0.4
Light meromyosin	0.64
Fd virus	1.54
Polyamide oligomers	1.0-1.7
Polyelectrolytes/Polysaccharides	
Alginate in varying ionic strength $I = 0.2-0.005$ M NaCl	0.35-0.55
Guar gum in monovalent ions/urea	0.5-0.6/0.9-1.3
Succinoglican 25/75 °C	0.34/0.44
Poly(styrene sulfonate) $M = 4.1 \times 10^5$ g/mol $I = 10^{-1} - 10^{-3}$ M	0.8-2.0
Poly(styrene sulfonate) $M = 1.1 \times 10^{6}$ g/mol $I = 10^{-1} - 3 \times 10^{-5}$ M	0.4-7.9
Chondroitin sulfates $I = 0.15$ M	0.004-0.24

Huggins constant, k_H

An extensive compilation of literature	
Pamies,and Garcia de la Torre, Colloid Polym. Sci. 2008	
In the absence of	
(a) Aggregation	
(b) Strong electrostatic interactio	n,
$k_H \cong 0.3 - 1.2$ (spheres, rods, random coils,)	

Antibodies, $k_H \cong 0.8$

Conclusions:

** Dilute-solution props., particularly [η], can be reliably calculated and/or analysed with our computational tools

** *c* - dependence of η of dilute solutions can predict aggregation behavior and abnormally high η at higher *c*

** The pharmacological relevance of the abnormally high η of biologics in moderately concentrated solutions should be a stimulus for new theoretical / computational developments

Thank you!

UNIVERSIDAD DE MURCIA

Group of Physical Chemistry of Macromolecules Co-authors: A. Ortega , D. Amoros, J.G.Hernández-Cifre, R. Pamies

PARQUE CIENTÍFICO MURCIA

Interest, encouragement and support: Steve Harding (Nottingham,UK) Germán Rivas (CIB, Madrid)

Ben Arabí Supercomputer