Modelling Powder Flow Into a Confined Space

Powder Flow 2018, London. 12th April 2018

Charley Wu

Chemical and Process Engineering University of Surrey, Guildford, UK @charleywu C.Y.WU@surrey.ac.uk

Introduction

Many products are manufacturing through compaction of dry powders, involving powder flow into a confined space.

Typical Manufacturing Process

Why Die Filling Is Important?

Any problem during die filling will have a direct impact on the quality of the final products.

Failure during die filling can lead to

- Tablets of inaccurate dose!
- Products with large weight variation
- Products with non-uniform contents that detrimentally affect the functionality
- o Gears of uneven strength and with weakest links.
- Distortion (and complete failure) during subsequent processes, such as sintering.

"If your doctor prescribed half a tablet a day, which half would you want to take?" (Malvern Instruments, 2008).

Methodology (Exp. + Modelling)

- □ A combined experimental and numerical approach was employed to understand the die filling process.
- □ A model die filling system was developed.
- Die filling behaviour was visualised using a high speed video system.
- Quantitative analysis was also performed using
- PEPT -> particle velocity
- A pressure sensor -> time evolution of deposited mass.
- An air pressure sensor -> air pressure build-up
- Mechanistic analysis was performed using DEM-CFD

A typical experimental set-up

High speed video

Spherical microcrystalline cellulose (Celphere, CP102)

Wu, C.-Y., X.F. Fan, F. Motazedian, J.P.K. Seville, D.J. Parker, A.C.F. Cocks, (2010). A Quantitative Investigation of Powder Flow during Die Filling Using Positron Emission Particle Tracking (PEPT). Proceedings of the Institution of Mechanical Engineers, Part E, Journal of Process Mechanical Engineering. 224(3): 169-175.

DEM-CFD

Guo Y, Wu C-Y, Thornton C. (2013) Modeling Gas-Particle Two-Phase Flows with Complex and Moving Boundaries using DEM-CFD with an Immersed Boundary Method. AICHE JOURNAL, 59 (4), pp. 1075-1087

DEM-CFD

DEM-CFD Validation

Validation of DEM models is important.

DE

DEM

EXP

Experimental

- Qualitatitive validation is easy, is it convincing?
- Case-to-case quantitative validation is difficult.

DEM-CFD with Non-spherical Particles **SURREY**

- Multi-sphere -> approximate particle shapes using clumped spheres.
- Utilize the rigorous contact laws for modelling particle-particle interaction

Die filling with real particles (Wu et al. 2016)

DEM approximation

UNIVERSITY OF Flow from a stationary feeder In Air In Vacuum

 $\rho_{\rm s} = 1500 \text{ kg/m}^3, d_{\rm p} = 50 \ \mu \text{m}$

UNIVERSITY OF Flow from a stationary feeder In Air In Vacuum

Flow from a stationary feeder

This is in excellent agreement with Berveloo constants obtained experimentally (*C* is in the range of 0.55-0.65, for spherical particle C≈0.58, see Seville et al. 1997).

Guo Y., Kafui K.D., **Wu C.Y.**, Thornton C. and Seville J.P.K., (2009), A coupled DEM/CFD analysis of the effect of air on powder flow during die filling. *AICHE Journal*, 55 (1): 49-62.

Flow from a stationary feeder

Guo Y., Kafui K.D., **Wu C.Y.**, Thornton C. and Seville J.P.K., (2009), A coupled DEM/CFD analysis of the effect of air on powder flow during die filling. *AICHE Journal*, 55 (1): 49-62.

(Fine sand, V_{shoe}=300 mm/s)

(MCC, V_{shoe}=50 mm/s)

- There is a critical filling speed during die filling, above which the die cannot be completely filled.
- The critical filling speed is a function of powder properties, and process system parameters
- For a given process system, the critical filling speed is dominated by powder properties. This can also be used to assess powder flowability.

UNIVERSITY OF Flow from a moving feeder Angle of repose Good flowability 7.5 Can Index Critical Filling Speed (mm s) 15 200 25 00 5 Poor flowability CP305 0.9 0.6 0.3 Flow Function 50% Husner Ratio CP102 1.6 Mass Flow Rate (g s)

A Mathematical Model for Die Filling

The variation of the deposited mass with the filling speeds for a) Silibeads 300; b) Cenopheres 500; c) Mannitol and d) Alumina 4.

A Mathematical Model for Die Filling

The critical filling speed obtained in the closed die experiments as a function of ξ (=Ar. ϕ)

Ar =
$$\frac{\rho_a \rho_s g d_p^3}{\eta^2}$$
 $\Phi = \frac{\rho_p}{\rho_a}$

Conclusions

UNIVERSITY OF SURREY

- Powder into a confined space depends upon powder properties, die geometry and filling conditions.
- The influence of air presence can be significant.
- DEM-CFD is capable of capturing the major features during die filling.
- Critical filling speed could be used to characterise powder flowability.
- Based on air sensitivity classification obtained by Guo et al. (2010), a model was developed to predict the deposited mass and the critical filling speed.

Acknowledgements

EPSRC IFPRI AstraZeneca Sanofi Pfizer

Dr. Yu Guo Dr. Chunlei Pei Dr. Serena Schiano Mr. Joesry El Hebieshy Ms. Anastasiya Zakhvatayeva Dr. Colin Thornton Dr. Ling Zhang

