

Powder flowability at low stresses: ball indentation

Colin Hare

Department of Chemical and Process Engineering, University of Surrey

Powder flowability

Ø Uniaxial compression test

σ_1 : pre-consolidation stress σ_c : $\overline{\sigma}_c$: $\overline{\sigma}_$

Flowability measurement

Ø More commonly measured with shear cells

Proposed method

Ø Elastically deforming region provides additional constraint:

$$H = C \cdot \sigma_c$$

[2] Hassanpour, A., Ghadiri, M., 2007 "Characterisation of flow of loosely compacted cohesive powders by ball indentation", *Particle & Particle Systems Characterization* 24, 117-123

Ball indentation

Ø Routinely used for characterising hardness of continuum solids

- \mathbf{O} C is known for metals (~3)³
- O C can be calculated from material properties for organics & polymers⁴

Ø Indentation procedure has been established⁵:

- Ø Indenter size to be used for a given particle size
- Ø Minimum amount of powder needed
 - Ø Bed diameter
 - Ø Bed height
- Ø To what depth the indent should be made

^[3] Tabor, D., 1951 "The hardness of metals", Clarendon Press

^[4] Johnson, K.L., 1985 "Contact mechanics", Cambridge University Press

^[5] Zafar, U., Hare, C., Hassanpour, A., Ghadiri, M., 2017 "Ball indentation on powder beds for assessing flowability: Analysis of operation window", *Powder Technology* 310, 300-306.

Indenter size

[5] Zafar, U., Hare, C., Hassanpour, A., Ghadiri, M., 2017 "Ball indentation on powder beds for assessing flowability: Analysis of operation window", *Powder Technology* 310, 300-306.

Minimum amount of powder

[5] Zafar, U., Hare, C., Hassanpour, A., Ghadiri, M., 2017 "Ball indentation on powder beds for assessing flowability: Analysis of operation window", *Powder Technology* 310, 300-306.

Indentation depth

[5] Zafar, U., Hare, C., Hassanpour, A., Ghadiri, M., 2017 "Ball indentation on powder beds for assessing flowability: Analysis of operation window", *Powder Technology* 310, 300-306.

Indentation procedure

- Ø Indenter diameter ≥ 17 d_p
- Ø Bed diameter ≥ 1.5 D_{Ind}
- \blacksquare Bed height \ge 40 d_p

Size d ₅₀ (µm)	Diameter (mm)		Bed height	Bed Volume
	Indenter	Bed	(mm)	(mm³)
50	0.85	1.7	2	5
100	1.7	3.4	4	40
200	3.4	6.8	8	300
500	8.5	17	20	4500

- **Ø** Dimensionless penetration depth $(h/R_i) \ge 0.4$
- [5] Zafar, U., Hare, C., Hassanpour, A., Ghadiri, M., 2017 "Ball indentation on powder beds for assessing flowability: Analysis of operation window", *Powder Technology* 310, 300-306.

Determining constraint factor

- Generally we want to know the unconfined yield stress
 - Ø Need to know constraint factor
- Ø How does constraint factor vary with particle properties?
- **Ø** Can shear cell data be reliably extrapolated to low stress?

Materials

- Indentation tested for wide range of powders
 - Silanised glass beads (varying size distributions)
 - Solution Food powders sweetener, maize starch, pea protein
 - Inorganic powders limestone, titania, talc, copper

Methods

- Ø FT4 shear cell
- **Ø** Ball indentation

Unconfined Yield Strength

Hardness

Constraint factor

Size distribution effect

Adhesion to the piston

Low stress behaviour

Comparison of techniques

Shearing at low stresses

Food powders – shear cell

Constraint factor

Slip-stick behaviour: pea protein

Slip-stick behaviour: pea protein

Slip-stick: strain rate effect

Comparison of techniques - maize

Shearing at low stresses

Inorganic powders

Inorganic powders

Conclusions

Solution Flowability cannot be easily measured at low stresses using shear cells

- Target stresses often not obtained
- Ø Determined yield locus may be inconsistent
- Ball indentation can provide reproducible measurements of flowability at low stresses
 - Requires constraint factor to be known (or determined)
- Ø Constraint factor found to be independent of applied stress
 - \blacksquare Though varies (~ 2 6) for different materials
 - **Ø** Reduces slightly with d_{50} , though increases with fines addition
- Several powders exhibit sharp reduction in shear stress at lower stresses
 Behaviour at higher stresses cannot be reliably extrapolated

Future work

Ø DEM will be used to analyse C at low stresses

 $\boldsymbol{\mathcal{O}}$ And influence of particle shape on C

Section 2018 Experimentally assess dependency of C on surface energy

A range of coatings applied to different batches

Investigate indentation at high-strain rates

Ø Optimisation of shear cell procedure at low stresses

- Mumber of pre-shear steps applied
- Ø Defined end point i.e acceptable deviation to define steady state
- Required agreement between consecutive pre-shears

Acknowledgements

Collaborators

- Ø Dr Umair Zafar
- Ø Dr Massih Pasha
- Ø Mr Alex Stavrou

Engineering and Physical Sciences Research Council

- Ø Prof. Mojtaba Ghadiri
- Ø Dr Ali Hassanpour
- Ø Mr Tim Freeman
- Ø Dr Marty Murtagh

