

Better Science, Better Ethics: Animal-Free Cosmerc Safety Testing Approaches

RSC FTSG Personal Care Formulating 17 March 2022

Dr Louise Suleman Project Manager, XCellR8

- 1. XCellR8 and our mission
- 2. Truly animal-free testing what is it and why does it matter?
- **3**. Adapting a test to animal-free conditions (TG442d)
- 4. Developing an animal-free test (XtraMild)

- UK-based GLP
 accredited lab
- Expertise in *in vitro* testing for safety & efficacy
- Regulatory and nonregulatory testing
- Fully customisable methods
- The only 100%
 animal-product-free
 laboratory globally

Copyright XCellR8 Ltd

Our mission

To accelerate the world's transition to **100% animalfree testing** through our scientifically advanced and ethical approach

Are cosmetics now tested without cruelty to animals?

- Ban in Europe fully in place since 11th March 2013
- 80% countries still test cosmetics on animals!
- Other regulations (e.g. REACH) require animal testing of ingredients in some cases.
 - Recent rulings by ECHA have put the ban at risk in the EU.
- Many "non-animal" tests still ultimately require animal sacrifice
- Ecotoxicology testing still requires animals, e.g. acute toxicity to fish

Truly animal-free testing

- Most in vitro methods use animal components
 - Foetal bovine serum
 - Tissue extracts
 - Antibodies
- Scientific and ethical considerations
- Improved reproducibility (when using chemically defined systems)
- Driven by consumer and industry demand for sustainable, ethical products (*and* ethical testing)
- Truly animal-free testing needs to be animal-productfree
- Vegan products require vegan testing

© Copyright XCellR8 Ltd

Adaptation of an existing method:

KeratinoSens[™] Skin Sensitisation Test (OECD TG 442d) to <u>Xeno-Free</u> Conditions

Skin sensitisation – why testing is so important

- 1-3% (~7.5 million people) Europeans suffer from contact allergy to a cosmetic ingredient
- Skin sensitization to a cosmetic ingredient is a **permanent condition**
- *In vitro* tests provide an ethical alternative to human trials
- Preservatives and fragrances are the most common causes of skin sensitization in cosmetic products
- This is true for both natural and synthetic ingredients **natural does not mean safe!**

Current regulatory guidance favours "2 out of 3" approach

Animal-product-free skin sensitisation testing

THE CHALLENGE

- DPRA (OECD TG 442c)
- KeratinoSens™ (OECD TG 442d) uses animal components
- h-CLAT (OECD TG 442e) uses animal components

Skin sensitisation adverse outcome pathway (AOP)

KEY EVENTS IN SKIN SENSITISATION AND RELATED TESTS

- 1. Contact (Direct Peptide Reactivity Assay – DPRA)
- Release of Pro-Inflammatory Cytokines by Keratinocytes (KeratinoSens[™])
- Dendritic Cell Activation/Maturation (human Cell Line Activation Test – h-CLAT)
- 4. Migration
- 5. T-cell Proliferation (Local Lymph Node Assay - LLNA)

© XCellR8 Ltd

Regulatory guidance: "2 out of 3" approach

Adaptation of the KeratinoSens[™] Skin Sensitisation Test (OECD TG 442d) to <u>Xeno-Free</u> Conditions

Published in ALTEX:

Belot, N., Sim, B., Longmore, CL., Roscoe, L. and Treasure, C. (2017)

Adaptation of the KeratinoSens[™] skin sensitisation test to animal-product-free cell culture >

KeratinoSens[™] - Method outline

- Human keratinocyte cell line (HaCaT) transfected with a luciferase reporter linked to Nrf2-mediated activation of Antioxidant Response Element (ARE)-linked genes
- 12 concentrations of test chemical incubated for 48 hours (in triplicate; 3 independent runs)
- Luciferase response measured by luminescence and cytotoxicity measured by MTT

Xeno-Free adaptation of KeratinoSens™

- Animal-derived components were replaced with human-derived & recombinant equivalents:
 - FBS replaced with pooled human serum (60-70 donors) obtained from FDA-approved source / Sigma Aldrich – cells adapted to new culture conditions
 - Porcine trypsin replaced with recombinant Trypzean™
- In-house validation using the panel of proficiency chemicals and performance standards for OECD TG 442d

Results: Non-Sensitisers (as per LLNA)

Chemical Name	Validated Reference Method (VRM)			XCellR8 Animal-Product-Free Adaptation		
	I _{Max}	EC1.5 (μΜ)	Prediction	I _{Max}	EC1.5 (μΜ)	Prediction
Isopropanol	1.2	n.i.	Non-Sensitiser	1.2	n.i.	Non-Sensitiser
Salicylic Acid	1.1	n.i.	Non-Sensitiser	1.4	n.i.	Non-Sensitiser
Lactic Acid	1.3	n.i.	Non-Sensitiser	1.3	n.i.	Non-Sensitiser
Glycerol	1.2	n.i.	Non-Sensitiser	1.4	n.i.	Non-Sensitiser
4-methoxy-acetophenone	1.7	449.3	Sensitiser	2.1	620	Sensitiser
Chlorobenzene	1.2	n.i.	Non-Sensitiser	1.2	n.i.	Non-Sensitiser
Methyl Salicylate	1.2	n.i.	Non-Sensitiser	1.2	n.i.	Non-Sensitiser
Sulfanilamide	1.4	n.i.	Non-Sensitiser	1.1	n.i.	Non-Sensitiser

© XCellR8 Ltd

n.i. = not induced

Results: Sensitisers (as per LLNA)

Chemical Name	Validated Reference Method (VRM)			XCellR8 Animal-Product-Free Adaptation		
	I _{Max}	EC1.5 (μM)	Prediction	I _{Max}	EC1.5 (μM)	Prediction
Cinnamyl alcohol	1.7	123.6	Sensitiser	4.2	20	Sensitiser
Ethylene Glycol Dimethacrylate	188	57.4	Sensitiser	4.8	29	Sensitiser
Phenyl Benzoate	1.3	n.i.	Non-Sensitiser	1.1	n.i.	Non-Sensitiser
<u>Eugenol</u>	1.3	n.i.	Non-Sensitiser	2.2	286	Non-Sensitiser (borderline)
2-Mercaptobenzothiazole	8.8	48.1	Sensitiser	6.9	57	Sensitiser
Citral	96.4	23.2	Sensitiser	3.8	18	Sensitiser
Isoeugenol	6.4	16.1	Sensitiser	3.4	20	Sensitiser
Methyldibromo Glutaronitrile	4	7.8	Sensitiser	2.7	8	Sensitiser
4-Methylaminophenol Sulfate	5.9	9.4	Sensitiser	36.1	4	Sensitiser
Para-phenylene Diamine	26.8	5	Sensitiser	28.2	6	Sensitiser
2,4-Dinitrochlorobenzene	14.8	2.5	Sensitiser	8.5	1	Sensitiser
4-Nitrobenzyl Bromide	6.9	1.3	Sensitiser	10.5	<0.98	Sensitiser
Oxazolone	2.4	175.5	Sensitiser	5.4	129	Sensitiser

n.i. = not induced

© XCellR8 Ltd

??

Animal-product-free (APF) adaptation of KeratinoSens™ Conclusions

- All 20 reference chemicals correctly classified in line with Validated Reference Method (VRM)
- Data accepted by the OECD Expert Working Group on Skin Sensitisation and WNT National Co-Ordinators' Committee
- Adapted method published as an Annex to the VRM in the new version of OECD TG 442d 2018
- Therefore full acceptance as a regulatory method

- Participation in thought-starter paper and OECD workshop on the ethical use of human reagents:
 - Addressing potential ethical issues regarding the supply of human-derived products or reagents in *in vitro* OECD Test Guidelines.

Published in ALTEX 2019

- Xeno-free adaptation of h-CLAT including human serum and animal-free antibodies:
 - Edwards et al, ALTEX, 2018
- Adaptation of KeratinoSens[™] and h-CLAT to fully defined conditions

© XCellR8 Ltd

Creating an animal-free test:

XtraMild – Skin Mildness Test for Safety & Claim Support

Why we need a new method to predict mildness (I)

- Study of 12,377 individuals in Europe*
- Incidence of skin reactions lasting more than 3 days:
 - 19.3% within the last month
 - 31.8% within the last year
 - 51.7% within a lifetime
- Avoidance of daily life consumer products due to skin reactions:
 - 37.0% for skincare
 - 17.7% for "household or functional" products

* Naldi *et al* (2014). Prevalence of self-reported skin complaints and avoidance of common daily life consumer products in selected European regions. *JAMA Dermatol* **150**(2): 154-162

© Copyright XCellR8 Ltd

Why we need a new method to predict mildness (II)

- Increasing demand from consumers for ever milder products, that they feel confident using even when their skin is feeling extra sensitive
- Increasing demand from marketing teams for differentiating claims
- 2 year research project 2017-2019, funded by Innovate UK
- Research aims:
 - Optimising in vitro and human in vivo test methods for maximum sensitivity
 - Assess predictive capacity
 - Real world applications

© Copyright XCellR8 Ltd

We work with

Existing methods: *In vitro* irritation testing

- 3D human skin models, grown at the air-liquid interface
- Suitable for testing ingredients and finished products
- Applied directly to the tissue surface good model of "real life" exposure
- Standard regulatory method (OECD TG 439) measures a single exposure time to classify irritants vs non-irritants for hazard identification and labelling purposes
- Validated against historical animal data (Draize test)
- A more sensitive approach is required for today's mild cosmetic ingredients and formulations beyond a yes/no answer – <u>how</u> mild is the test item?

Cross section through reconstructed human epidermis

© Copyright XCellR8 Ltd

- Measures cell damage over a time course
- Classifies as Severe, Moderate, Mild or Minimal / Non-Irritant
- ET50 = time taken to reduce the viability of the skin model to 50% compared with untreated controls
- ET50 values allow rank order of irritation to be determined in comparison with other formulations / competitor and market leading products
- Standard methodology limited to 18 hours

Copyright XCellR8 Ltd

How we optimised the test methods *in vitro*

- Development of an extended timepoint *in vitro* 3D model to look at the irritancy potential of ultra-mild test items over 48 hours
- Determination of ET_{50} values for known surfactant controls with a range of irritation potentials
- Development of a prediction model linking the *in vitro* skin irritation ET₅₀ method with an *in vivo* human skin patch test model for ultra-mild surfactants
- Creation of a database of industry leading ingredients and formulations to be used as benchmarks in future tests for client companies

How we optimised the test methods in vitro

Test Items	Surfactants: SLS, SLES, CAPB, a novel "mild" surfactant	W Col
	Applied to the skin model surface and incubated for 1, 5, 18, 24 and 48 hours	
	Negative control: not treated	1
Controls	Positive control: Triton X-100 (non-ionic surfactant): 1% solution	
Measurement	Metabolic activity (conversion of MTT) as an indicator of cell damage	
Output	ET50 value (time taken to reduce the viability of the cells to 50% compared with the untreated negative control)	Time Calure inset

Copyright XCellR8 Ltd

Determining the correlation between in vitro and in vivo results – some examples

SURFACTANTS
 FACE MASKS

In vitro irritation potential of 4 surfactants

Test items (0.3%, pH 4.7) at 1, 5, 18, 24, 48hrs

Rank order of irritancy using linear extrapolation and logic equation

		С	>	Α	>	В	>	D
00	ET50	9.37		10.25		29.4		38.08
	CS	14		9		4		0

Irritancy classification:

C = SLS: Moderate to Mild

A = SLES: Moderate to Mild

B = **CAPB**: Non-Irritant

D = Novel surfactant: Non-Irritant

© Copyright XCellR8 Ltd

Face mask comparison *in vitro* and *in vivo*

Rank order of irritancy using linear extrapolation and logic equation

	В	>	Α	>	С
ET50	12.86		14.42		>48
CS	11		5		2

IRRITANCY CLASSIFICATION

B = face mask 2: Very mild
A = face mask 1: Very mild
C = face mask 3: Non-irritating

Face mask C is the mildest product using this method

© Copyright XCellR8 Ltd

Building a reference database: relative mildness of soaps vs facial cleansers

A variety of applications

- Ingredients:
 - Assessment of novel biosurfactants and other ingredients to assess mildness compared with other manufacturers and traditional materials
- Formulations:
 - *In vitro* benchmarking of new products against other brands or in-house formulations in development
 - Growing database for benchmark values currently includes:
 - ✓ Facial soaps
- ✓ Shampoos
- ✓ Facial cleansers
- ✓ Face masks
- ✓ Shower gels✓ Sunscreens
- ✓ Moisturisers
 ✓ Deodorants
- ✓ Body soaps
- ✓ Baby care products (oils, lotions, shampoos, bubble baths)

- Many 'non-animal' tests still use animal components
- Using animal components raises scientific & ethical questions
- Adaptation of regulatory safety tests is already happening but it needs investment
- Technology and expertise to develop new animal product free methods is available
- In vitro testing provides robust safety information, and strong database for bench marking ingredients & formulations – IT'S BETTER SCIENCE
- Ethical advantages: limits human exposure, whether used as stand-alone test or pre-screen to clinical studies
- Marketing / consumer appeal

© Copyright XCellR8 Ltd

Thank you

Dr Louise Suleman Project Manager louise.suleman@x-cellr8.com

