The hatch, match and dispatch of nanomaterials

PrometheanParticles

Formulating solutions with nanomaterials

Prof Edward Lester
University of Nottingham

NANOPARTICLE PRODUCTION

COMMERCIAL APPLICATIONS

DRY SYNTHESIS METHODS

Plasma, flame, laser

FORMULATION

Redispersion, surface modification

WET SYNTHESIS METHODS

Sol-gel Hydrothermal Solvothermal CATALYSTS
COMPOSITES
MEDICAL
COSMETICS
ELECTRONICS
HEALTHCARE
MATERIALS
POLYMERS

Advantages of hydrothermal synthesis...

- Made in water
- Precursors are 'reasonable'
- economical
- Not airborne
- Dispersed
- Pre-Formulated
- Potentially continuous

2. The development of hydrothermal technology 'Hatching'

The Continuous Hydrothermal Synthesis Process

 $ML_x + xOH^- = M(OH)_x + xL^-$ (Hydrolysis step) $M(OH)_x = MO_{x/2} + x/2H_2O$ (Dehydration step) T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. **1992**, 75, 1019

A natural T piece reactor...

RIG 21 Scenario

Problems!!!!

Distribution of mixing is very poor

Dominant mixing and therefore reaction within the Metal Salt inlet

Junction

Different orientations of the T-Piece?...

Why is it so difficult?

$$Re = \frac{\rho . d.u}{\mu}$$

$$Gr = \frac{g.\Delta \rho.\delta^3}{v^2}$$

Reynolds number

Grashof number

$$Re = \frac{Inertia Forces}{Viscous Forces}$$

$$Gr = \frac{\text{Bouyancy Forces}}{\text{Viscous Forces}}$$

The model is run at flowrates than give identical Reynolds Numbers to that of exhibited in the SWHS Rig

Reactor Geometries Tested

"Spiral 1"

The New Design

Advances

Design takes advantage of the density differential between to the two reactants to create an ideal mixing environment

Strong downstream macro-eddies are generated and these aid the rapid transportation of particles out of the reactor. Thus, minimising the particle growth and accumulation within the reactor

Promethean Particles

A spin-out from:

We use a patent protected process:

continuous hydro-/solvo-thermal synthesis

To offer a two stage solution

- design and development (feasibility studies)
- 2. production (scale-up manufacture)

Prometheus?

In Greek mythology
Prometheus is a Titan
known for his wily
intelligence, who stole
fire from Zeus and gave it
to mortals for their use...

NANOTECHNOLOGY An enabling technology...

We recognise that every application of nanoparticles is unique and requires a tailormade material to achieve optimum results, that's why we work with our customers to develop the materials they need

The Team

Barry Stickings Chairman (formerly BASF UK Chairman)

Dr Sandy Gordon
Business
Development
Manager

Prof Ed Lester Technical Director

Dr Helen Hobbs Technical Manager

Dr Pete Gooden Research Chemist

Our technology has a wide variety of advantages;

Product control

- Particle size
- Particle size distribution
- Morphology

Dispersed product for easy formulation

Continuous process allowing scale-up

Advantages

An enabling technology...

Materials that we make...

Successful Implementation in Industry?

1. Particle size control

No tail end on PSD, close to monosize?

2. Formulation

 Coating or capping particles ready for use, for phase transfer

3. Scale up

g/s per hour to kg's-ton's per year

Control over Size

•With superparamagnetic properties – useful for MRI contrast agents

Silver: Ag

✓ Control of particle stability in solution

Control over morphology

Rods or Cubes?

Formulation 'matching'

Capping and Formulation

Capping Online

3. Scaling up the technology

Pilot scale reactor (kg's/day)

Scalability and Operational Parameters...

Zirconia: comparison

Lab scale reactor

Pilot scale reactor

Hydroxyapatite: comparison

Lab scale reactor

Pilot scale reactor

2nd generation materials and applications

Formulating solutions with nanomaterials

NANOPARTICLE PRODUCTION

COMMERCIAL APPLICATIONS

DRY SYNTHESIS METHODS

Plasma, flame, laser

FORMULATION

Redispersion, surface modification

WET SYNTHESIS METHODS

Sol-gel Hydrothermal Solvothermal CATALYSTS
COMPOSITES
MEDICAL
COSMETICS
ELECTRONICS
HEALTHCARE
MATERIALS
POLYMERS

Conclusions

 Promethean Particles is able to manufacture dispersed, formulation, high quality nanomaterials – (g's-kg's-tn's/annum scale)

 We create nanomaterials for the each application in order to maximise the chances of successful implementation

PrometheanParticles

Formulating solutions with nanomaterials

