Lean Model Management for Production Environments

Formulation 4.0 13 December 2018

Lean Model Management Overview

Perceptive Engineering

- About Us
- Process Agility: Challenges and Solutions
- Model Development, Validation
- Model Management
- Model Deployment Optimised Manufacturing
- Summary, Q&A

Lean Model Management Perceptive Engineering

Who

- Industrial Advanced Process Control
- 25 APC Engineers
- Offices in UK, Singapore, Ireland

Where

- Pharmaceutical
- Consumer Packaged Goods
- Environmental (Clean & Wastewater)

Academic / Innovation Alliances

- Universities of Cambridge, Manchester, Newcastle, Rutgers, UCL, Strathclyde, Leeds, Surrey
- Centre for Process Innovation (CPI), Centre for Continuous Manufacturing and Crystallisation (CMAC), Institute of Chemical and Engineering Sciences (ICES Singapore), Research Centre Pharmaceutical Engineering (RCPE), Synthesis and Solid-state Pharmaceutical Centre (SSPC)

Industrial partnership with Siemens and GEA

Lean Model Management PerceptiveAPC Software Platform

餐 Data Quality Monitoring

SPC Monitoring

H Multivariate Modelling

Multivariate Process Monitoring

Multivariate MPC

Lean Model Management Process Agility: Challenges

Spectrum

- Bulk powder production: 1 product equates to >90% of annual tonnage
- High-value manufacturing: multiple grades or recipes in 1 day
- Need: re-task production assets as quickly as possible (just-in-time manufacturing)

Distributed Data

- Process and Quality data generated per product, per variant, per process line, per plant
- No global historian?

How To

- Manage the complexity of multiple recipes, multiple raw materials, multiple CQAs
- Define impact of multiple variables from time-separated production runs
- Keep process models up-to-date
- Avoid compromise:
 - Why can't we have efficiency, energy saving and waste reduction at the same time?

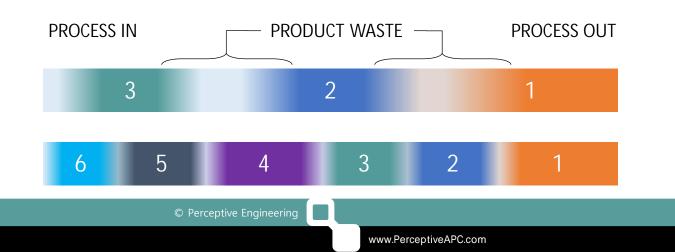
Lean Model Management Process Agility: Solutions

Model what you're making, not just what you're making it with

- Statistical modelling lets us predict end quality properties
- The prediction is another feedback signal into control of the process
- Digital model of the process: what to change, when, by how much, ahead of time

Cloud computing can bring people, data and models together

- Secure data storage
- Ease of access
- Appropriate model selection a global MES

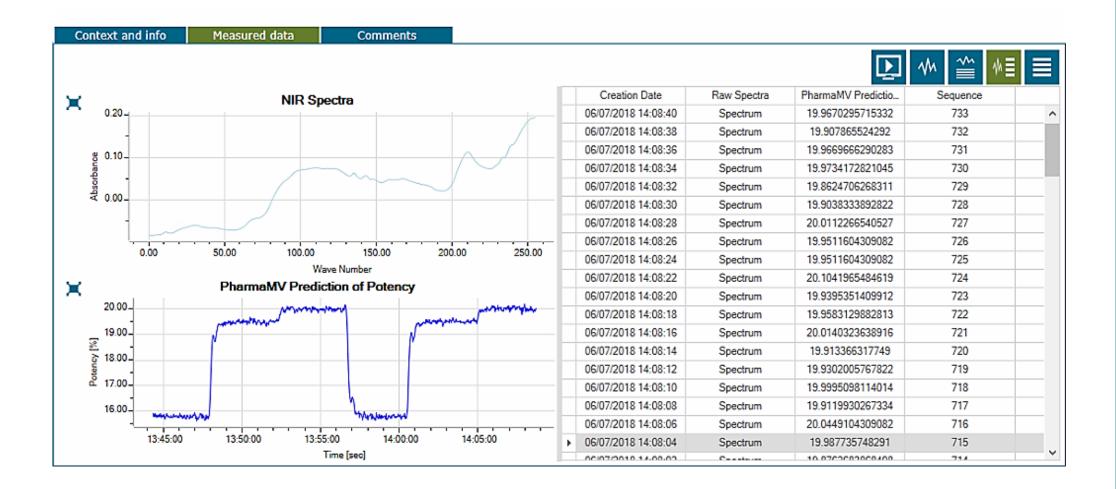

Context-driven machine learning keeps models updated

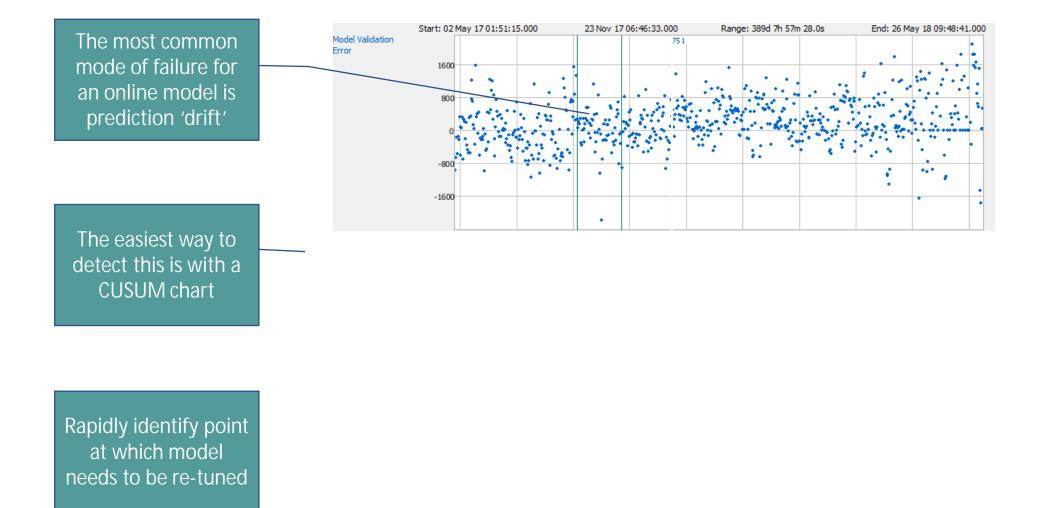
- Models updated as needed
- Context ensures models remain fit-for-purpose
- Machine-learning can learn the wrong thing (ever bought an Amazon suggestion?)

Lean Model Management Process Agility: Solutions

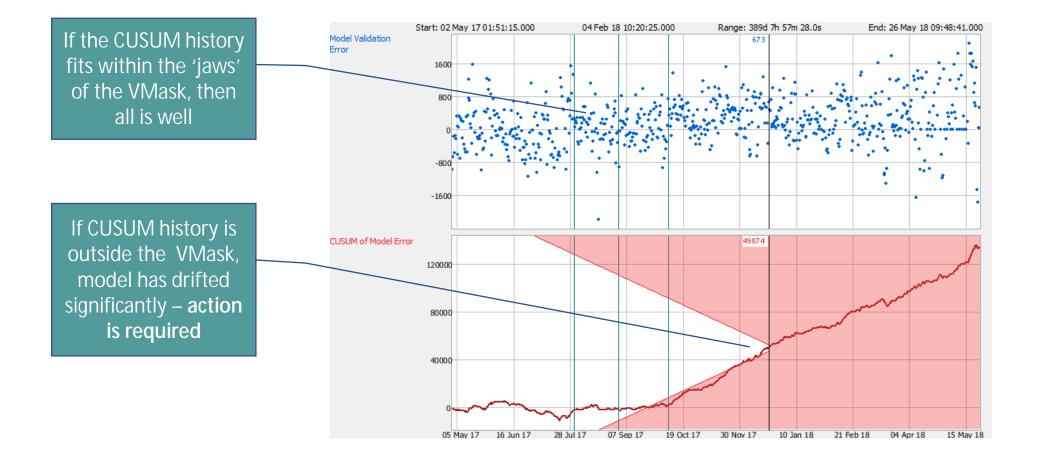
Pharmaceutical

- Traditionally batch: add everything, mix and react, test at the end
- PAT devices provide insight into batch development
- Model-based optimisation
 - batch endpoint prediction, batch trajectory control
- Now moving to continuous manufacturing for personalised medicines
 - PAT and digital models provide detailed understanding
 - Predictive models enable on-the-fly adjustment
 - True agility: assets tasked with continuously changing recipes




Formulated Products

- Multiphase complex liquids
- CQA only available after ALL ingredients are added, mixed, blended
- CQA highly influenced by variations in
 - process design
 - operational parameters
 - raw material quality


Modelling

- First, model process responses
- Second, model impact of raw material variability on quality
- Third, ensure the models are robust enough for industrial application

© Perceptive Engineering

Lean Model Management Adaptation

Where do we Adapt?

- **New process** no knowledge needs human-input model development
- Existing process scale-up, new product variant, process change model may not fit

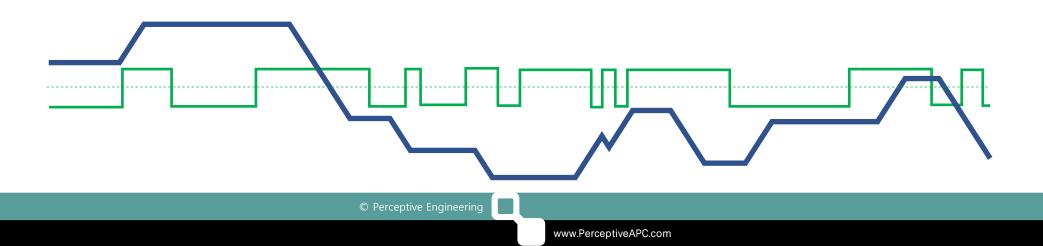
What do we Adapt?

- The control algorithms don't need to be changed, just how they are used
- The model needs to be changed, to provide better predictions to the controller

Why do we Adapt?

- No engineering resources to start from scratch
- No testing time available

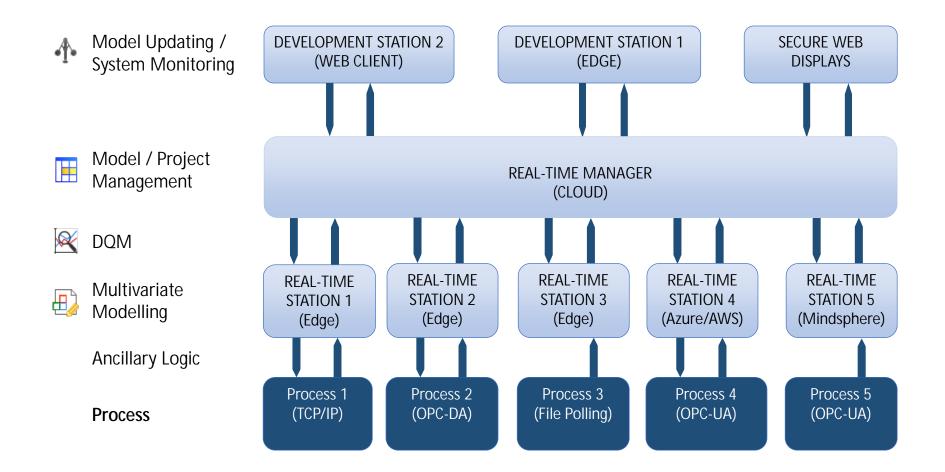
Machine Learning


• Unsupervised model development

Lean Model Management Adaptation

Practical Application

- Control remains 'on' even though performance may not be optimal
- Small PRBS perturbation is added smaller than existing control moves
- PRBS iteratively updates a second model in the background
- Adaptive algorithm 'knows' how the plant with behave with current model
- Mismatch between expected and actual behaviour generates adaptive model
- Only need to adapt those paths that need to be changed
- Process knowledge is key


Cloud-Based Model Management Real Time Manager Architecture

Features

- A common platform for development and real time systems
- Encrypted, version-controlled project storage and deployment
- Mapped with recipe / product tables
- Data extraction and modelling using **PerceptiveAPC Development**
- Manage PerceptiveAPC Real-Time instances for:
 - Deploying Chemometrics
 - Continuous Process Verification (CPV)
 - Statistical Process Control (SPC)
 - Advanced Process Monitoring, Control, Optimisation
 - OPC interface into process automation systems
 - User-friendly customisable secure remote displays
 - can be embedded into production systems

Cloud-Based Model Management Real Time Manager Architecture

Lean Model Management

Dedicated Remote Interface for Each Station

RT Station Stat Meas Enable Alarm

Watchdog Recipe/Wethod Lot Number Product Descrip Product ID

Comr

Integr Integr Avera Avera SentroDrive Spect

Dissemination and Access

- Provide the **right** information
- To the right people
- When they need it
- Enabling full interaction

				Offline	Online	e/Edit	Online				
		RT Station			_						
Status		Quality Attributes				Ot	her Attributes				
atus	No Method	Tag Description	Value	Status from RT Station	Status to SCADA	Tag Destrip					
_	ADA Enable Confirm	Overall Product		· · · ·			the sector				
	ок	Status				. Calaur van					
	ок	ValQA1 QA Variable 1	0.0			VarLate Latent Var			· · · · ·		
d -	1 none	ValQA2	0.0			VarLate	ent3 on				
	Lott_16072015	OA Variable 2 ValQA3				Labort var				7	
ription	APH	OA Variable 3	0.0			Latent Var	1able 4 U.U				
	X236_T53	ValQA4 CA Variable 4	0.0			VarLate Latent Var					
		Instrume	nt								N I
	hue T									9	
Stat		1100 mm			1		2100 nm 0.434	Offline	Onlin	o/E dit	Opling
escription	Status	Sentronic					/	Offline	Onlin		Online
mms Status mms Status							/				
Param	atare						RT Station 1				
Tag		Status				Quality Attributes				Other /	Attributes
escription	Value	RT Station Status		Measuring		Tag Description	Value	Status from RT Station	Status to SCADA	Tag Description	Value
gration Time gration Time	0.0	Meas Enable 🗹 On	SCAD		Confirm	Overall Produc	ct	i		VarLatent1	
rage Number	0.0	Alarm	OK	ОК		Status				Latent Variable	0.0
age Number er SpectraCounter		Watchdog		OK		ValQA1 QA Variable 1	0.0			VarLatent2 Latent Variable	0.0
etra Counter	1.883e+D3	Recipe/Method	0	PAT_Temp	usta 7.7	ValQA2	0.0			VarLatent3	0.0
Detector Termperature or Temperature	0.0	Lot Number		Lot1_16072015		QA Variable 2	2 0.0			Latent Variable	0.0
		Product Description		API1		ValQA3 QA Variable 3	0.0			VarLatent4 Latent Variable	0.0
		Product ID		X236_T53		ValQA4	0.0			VarLatent5	0.0
		Product ID		X236_153		QA Variable 4	0.0			Latent Variable	0.0
Te	st	Instrument									
Request R			۹					2100 nm			
Reference	Reguest	Tag	Statu			1100 nm					0.417
		Description		Status	Se	ntronic					
		Comms Status Comms Status									
		Commission									/
		Parameters								\wedge	
		Tag Description		Value							
		Integration Time		0.0							
		Integration Time Average Number						\sim		1	
		Average Number		0.0						1	
		SentroDriver SpectraCounter Spectra Counter		1.874e+03						\mathcal{I}	
		Spectra Counter SentroDriver Detector Termperature						\int			
		Detector Temperature		0.0				1	Υ		
		Test Reguest Reference			~	\sim	/	0.143		0.0	
		Reference Request						16	168 nm		

Lean Model Management In Practice

Manufacture of Personal Care Products

- Ingredients added, blended
- Batch tested, adjusted, blended, re-tested repeat until passed

Real Time Release

- Predict end quality from process, quality & raw material data
- Validate prediction against lab & at-line QC results before first trial

Project Results

- Initial goal 40% RTR
- 25 mins saved per 2-hour batch
- Increase in saleable production capacity equates to seven-figure financial benefit p.a.

Lean Model Management In Practice

Current Status

- Some CQAs difficult to measure low repeatability
- Model predictions are trusted more than tested results
- Any discrepancy repeat tests and take average of 5 results

Current Status - Manufacturing

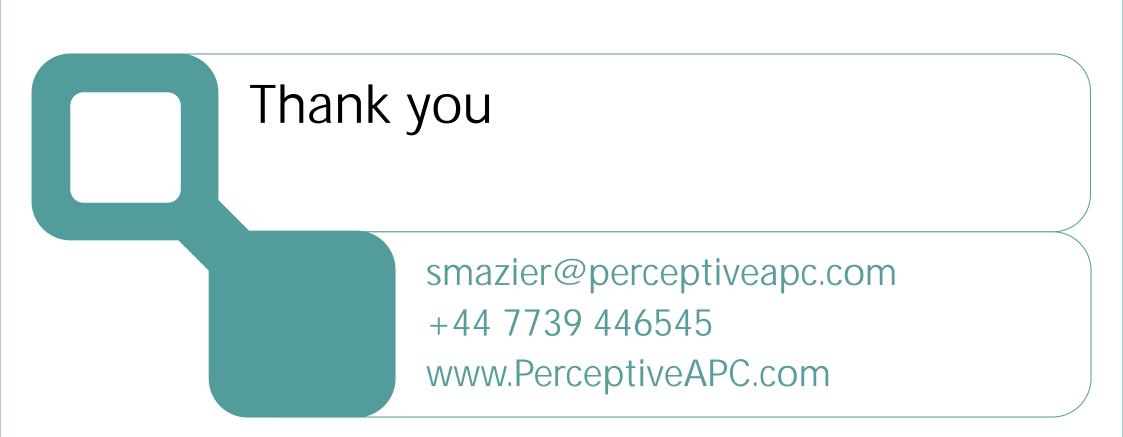
- Adjust recipes, change ingredients
- Broader number of products adjusted to 'fit' the models virtuous circle
- Now running at 100% real time release

Future

- Multi-site roll-out
- Cloud-based data capture, analytics, model selection

Summary

Big Data


- No-one really wants big data
- Manufacturers want 'big knowledge' and, from that, 'big decisions'

With big data comes big responsibility

- Exponential increase in data
- Onus is on correct use of process models derived from that data
 - selection, validation, adaption and deployment
- Model management across distributed and disparate systems what the cloud is for

Architecture

- AWS, Azure, MindSphere secure platforms for data collection and aggregation
- PerceptiveAPC toolset for model development, validation, industrially-robust control
- Perceptive RT Manager cloud-based management and model deployment

