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Overview of Presentation

n Setting the Scene:
Ø Challenges in Formulation Product & Process  Development and

Production

n Measurement and Modelling Challenges

n Software (Virtual) Sensors – some Industrial Applications

n Closure



Challenges in Formulations Development and Production
n Increasing new formulation introductions & aggressive development

cycles:
· Wider range of product forms:
ØReduced opportunity for generating data for analysis and

modelling
n Demands a culture-change:

Ø Products are Complex and Multivariate

Ø Processes are Dynamic and Time-varying

Ø Processes (e.g. reactions, …) are non-linear

Ø Products have ‘Multivariate Distributions’

n ‘Systems’ Engineering:
Ø Process and Product Centric - 6-sigma development & production
Ø A system is the product of interacting parts. Improving the parts

taken separately will not improve the whole system



Variability and Quality by Design
Joseph Juran Edwards Deming and Walter Shewhart

Cease reliance on mass inspection to achieve quality.

Eliminate the need for mass inspection by building quality
into the product in the first place.

Dr W.
Edwards Deming

(Circa 1980s)

“Learning is not compulsory, …
…. Neither is

survival”



Measurement and Modelling Challenges



Why is Measurement so Important

“You Can't Manage What You Don't Measure”
If you can’t measure it, you can’t improve it

Peter Drucker

“In God we trust, all others must bring data.”
W Edwards Deming

We would like to Measure, Control and Optimise
the Chemistry, Biology and the Physics



Modelling Techniques
n Regression based modelling

l Multiple Linear Regression (MLR)
l Principal Component Regression (PCR)
l Partial Least Squares Regression (PLS)
l Non-linear

• Non-linear PLS/PCR
• Weighted regression
• Fuzzy PLS/PCR
• Gaussian Process Regression

n Neural Networks
l Feed-forward neural networks
l Inverse neural networks – inverse models
l Fuzzy neural networks
l Wavelet-based neural networks
l Auto-associative neural networks
l Mixed-nodes neural networks
l Recurrent (Dynamic) neural networks – very powerful
l ................



Process and Multivariate Data Modelling
n Full Mechanistic Modelling is best.

n Empirical Modelling using process and analytical data also provides very
useful and powerful models – multivariate statistical modelling.

n Hybrid Modelling: the conjunction of reduced complexity mechanistic
models (e.g. mass and energy balances) with process and analytical data
is a very useful alternative.

n Transformations: reducing model complexity using transformations, e.g.
the Arrhenius equation for the temperature dependence of reaction rates is
often transformed.

Ø Caution: Transformations may well be useful in process control and
APC BUT transformations of data being used for multivariate
statistical analysis and modelling can destroy the multivariate data
structure and should ONLY be used with Care.

n Data Fusion: the integration of process measurement, process analytical
and calculated data – very powerful and many methods available.



Virtual Measurement through Software Sensors:
(Potential for impacting in Formulations)

n Soft sensors - known also as software sensors or inferential
measurements are operators’ and engineers’ virtual eyes and ears.

Ø Software sensors create windows into your process where
physical equivalents are unrealistic or even impossible and where
difficulties in measuring quality (primary) variables inevitably
mean poor or no control at all:

• e.g. reliance on lab assays/measurements leading to long
measurement delays.

• lack-of or cost-of or difficulty-of using on-line measurement
technologies.

• Reliability of existing sensors.

0.9

Can be Statistical (data based), Hybrid (mechanistic and data modelling),
Dynamic, Non-linear and Adaptive



Concepts of Software Sensors (Soft-sensors)
and Inferential Measurement and Control

n In developing inferential measurement systems, the objective is to model
the relationship between a primary output and secondary outputs and
inputs. The model can then be used to generate estimates of the difficult
to measure primary output at the frequency at which the easily measured
inputs and secondary variables are measured.

Ø Thus, say, instead of waiting 30 minutes for a gas chromatograph to
complete its analysis, the inferential measurement system could be
returning estimates of compositions every 5 minutes, using
measurements of temperatures and flows:

If sufficiently accurate, the inferred states of primary outputs can then be used as
feedback for automatic control and optimisation.



Soft (Virtual) Sensor ‘Industrial’ Articles – 2006 /
2014

Industrial articles - 2006

Industrial articles - 2014



Robust Inferential Models at Dow Chemicals (2014)

From: Arthur Kordon (Kordon Consulting, ex DOW), Leo Chiang, Zdravko Stefanov and Ivan Castillo Consider (DOW
Chemical Company), Robust Inferential Sensors (Easier-to-develop-and-maintain sensors offer significant benefits for

chemical processes), Chemicals Processing, Oct 2nd 2014

Calibration set for GT1 model
Predictions from model closely

matched measured values

Validation set for GT1 model
Model consistently provides accurate

predictions.



Industrie 4.0 - Smart Factory’s and Virtual Sensors
n Software (Virtual) sensor systems provide new opportunities for the

collection of physical, chemical and biological data measurements enabling
predictions of future process behaviour to be made.



Non Linear Modelling - Neural Networks
n Whilst many artificial neural network architectures have been proposed,

one structure has been predominant; that is the feed-forward artificial
neural network. A feedforward neural network is made up of
interconnected neuron-like elements, termed nodes, organised in layers
whereas a dynamic (recurrent) network has inbuilt recurrence within
each node and is arguably the most powerful nonlinear empirical modelling
approach.

Feed-forward Neural Network Dynamic (Recurrent) Neural
Network
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Confidence Intervals & Confidence Bounds for Non-linear Models
(Application to MMA Polymerisation Reaction)

R. Shao, J. Zhang, E B. Martin, A J. Morris,  Novel approaches to confidence bound generation for neural network representations, Artificial
Neural Networks, Fifth International Conference on Neural Networks, 7-9 Jul 1997
R. Shao, E. B. Martin, J. Zhang and A. J. Morris, Confidence Bounds for Neural Network Representations, Computers Chem. Engng, Vol. 21, Suppl.,
pp. S1173-S1178, 1997

ØThe fitness-for-purpose of a neural network model is determined by two factors. Firstly, the ability of the
network to predict an output and secondly, the distribution of the training data. The ability of a neural network
to predict future events can be described using confidence intervals (eg Student's t-distribution).
ØThe accuracy of a neural network model is also intrinsically linked to the distribution of the training data.
Where a prediction is made in a region where the training data is sparse, the confidence bounds should be wide
indicating less reliability in the resulting prediction, in contrast to a region where the training data is dense.



Is Your Model Useful?
n George (G.E.P)  Box often used to say “All models are wrong but some

are useful”.

n To analyse historical data the models are usually empirical:
Ø regression, data mining (deep learning, neural networks, decision trees,

etc.) or latent, eg PCA, PLS, PCR.

n Whether the model is “useful” depends on 3 things:

n The objectives for the Model:
Ø Passive         Classification. Software sensors / Inferential

Measurements, Process monitoring (MSPC)
Ø Active        Process analysis, Optimisation, Control

n The nature of the data used to build the model: Historical operating data or
data from DoEs

n The regression method used to build the model:
Ø Machine Learning, Classical regression Passive applications
Ø Latent Variable Models (PLS) Passive or Active applications

Courtesy John F MacGregor, Empirical Models for Analyzing “BIG” Data – What’s the Difference?



Software Sensors (Soft-Sensors)
and

Inferential Measurement & Control

Back to the Future

The ‘Original’ Version of Industrie 4.0 Virtual Sensors?

APRIL 26 20 1 8 14 40

14APRIL 26 20 1 8 40

MAY 28 19 87



The Early Days at Newcastle (1985 - 1992)
n The research and industrial application of adaptive inferential

measurement techniques and software sensors (soft-sensors) started in
Newcastle in 1985/1986.
Ø Guilandoust, M.T and A.J Morris, (1985), Adaptive Inferential Control of processes with

slow measurement rates, Proc. 36th Canadian Chemical Engineering Conference,
Calgary Canada.

Ø Guilandoust, M.T., Morris, A.J. and Tham, M.T., (1987), "Adaptive Inferential Control",
Proc. IEE, Part D, Control Theory and Applications, Vol 134, 3, pp 171-179, May 1987.

Ø Montague, G.A., Morris, A.J. and Tham, M.T., (1988), “Application of On- Line
Estimation Techniques to Fermentation Processes”, Proc. American Control
Conference, pp 1129-1134, Atlanta, USA.

Ø Tham, M.T., Morris, A.J. and Montague, G.A., (1989), “Soft-Sensing: A solution to the
problem of measurement delays”, Chem. Eng. Res. Des., Vol. 67, pp 547-554.

Ø Tham, M.T., Montague, G.A., Morris, A.J., and Lant, P., (1991), "Soft- Sensors for
Process Estimation and Inferential Control", Journal of Process Control, 1, pp 3-14.

Ø Montague, G.A., Morris, A.J. and Tham, M.T. (1992). "Enhancing bioprocess operability
with generic software sensors", Journal of Biotechnology, 25, pp 183-201.

Since that time the literature and industrial applications of software sensors has
exploded and more recently has been ‘re-invented’ as a ‘Virtual Process

Analytical Technology (PAT) tool’.



Enhancing Fed Batch Fermentation Controllability (circa
1990)

ØBiomass estimation test data sets from
two commercial scale fermentation runs
with SmithKline Beecham.
ØDifferent sugar feed-rates resulted in

different levels of biomass concentration.

ØThe performance resulting from controlling
biomass in a closed loop (by variation of
sugar feed) to a set point profile
predetermined by the fermentation
technologists.
ØReasonable set-point tracking is observed

when the loop is closed 40h into the
fermentation, and good disturbance
rejection following an air flowrate
disturbance at 130h is also observed.

Montague, G & J. Morris, Neural-network contributions in biotechnology, Tibtech  Aug 1994, 12, 312-324 Acknowledgements to: SmithKline Beecham

Predicted Biomass



The Joint Marlow Foods – ICI Myco-Protein 140,000L
Continuous Bioreactor at Billingham (circa 1990)

n In 1996 Marlow Foods in a joint
venture with ICI used a fermenter
from their single-cell animal feed
programme and with Marlow
Foods commissioned a 140,000L
air-lift fermenter for myco-protein
production at the ICI site at
Billingham.

Acknowledgements to: Marlow Foods and  ICI  Biologics

Adaptive Software Sensor Biomass Predictions

Ming T. Tham, Gary A. Montague, A. Julian Morris, and Paul A. Lant, Soft-sensors for
process estimation and inferential control, J. Proc. Conttol, 1, (1991) 3-14

G.A. Montague, A.J. Morris & M.T. Tham, Enhancing bioprocess operability with generic
software sensors, Journal of Biotechnology, 25 (1992) 183-201



Adaptive Inferential Soft Estimation Applications:
Industrial Demethaniser and Polymer Melt Flow Index

Acknowledgements to: ICI Engineering and ICI Chemicals and Polymers

Dynamic inferential estimation for the
regulation of top product composition in
an industrial Demethaniser using reflux

flow. The analyser delay was 20 min and
process variables overhead vapour

temperature, reflux flow rate, column feed
rate measured every 5 min. Top tray
liquid temperature was not available.

Melt Flow Index versus Lab
Measurement. Neural Network inputs
were reactor feed rate, coolant flow

rate and hydrogen concentration above
the reacting mass at 10 min intervals.



Prediction of Polymer Quality and Estimation
of Impurity and Reactor Fouling

Case Study: Batch MMA Polymerisation

Zhang, J., Morris, A. J., Martin, E. B. and C. Kiparissides, “Estimation of Impurity and Fouling in Batch Polymerisation Reactors through the Application of Neural
Networks. Computers and Chem. Engng, Vol 23, No. 3, 1999, pp 301-314.

Zhang, J., Martin, E. B., Morris, A. J. and Kiparissides, C., “Prediction of Polymer Quality in Batch Polymerisation Reactors Using Robust Neural Networks”,
Chemical Engineering Journal, 69(2),  1998, pp 135-143.

Zhang, J. Martin, E. B., Morris, A. J. and Kiparissides, C. , “Inferential Estimation of Polymer Quality using Stacked Neural Networks”, Computers Chem Engng,
21, 1997, pp S1173-S1178.



Methyl Methacrylate (MMA) Reactor
(Prediction of Weight & Number Average Molecular Weights

n Process measurements
● Coolant flow rate
● Inlet jacket temperature
● Outlet jacket temperature
● Monomer conversion
● Reactor temperature

MMA is foundational for
many acrylate polymers
and is an essential co-
monomer in paint,
coatings, and adhesives
resin formulations



Polymer Quality Variables
and On-line Measured Process Variables

Quality
(offline)

Process
(online)



Aggregated (Stacked) PLS Regression Models
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Aggregated (Stacked) Neural Network Models
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Model Predictions with 95% Confidence Bounds

o  Process Measurements
+  Neural Network Predictions

For clarity model
predictions confidence
bounds are plotted at 10
min intervals.

Batch 10

Batch 10 Batch 11

Batch 11



Single Network Predictions of
Number Average Molecular Weight
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Aggregated Network Predictions
of Number Average Molecular Weight

Note reduction in errors compared
to single network predictions

Note reduction in errors compared
to single network predictions
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Single Network Predictions of
Weight Average Molecular Weight
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Aggregated Network Predictions
of Weight Average Molecular Weight

Note reduction in errors compared
to single network predictions
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Estimation of Reactive Impurities
using Aggregated Neural Network Models

Batches
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o True Impurities   + Estimated Impurities                  Confidence Bounds



Estimation of Reactor Wall Fouling
using Aggregated Neural Network Models
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o True Fouling;  + Estimated Fouling;              Confidence Bounds



Closure



The Message

Its not just the Application of
Process Measurement and Control

Technologies

It is the COMBINED use of the appropriate
process measurements along with smart

modelling and smart chemometrics
for Success to be Achieved



Provide Significant Technological and Business
Opportunities

n Industrial applications are much more complex than implementing ‘eight
sensors’ in a smart-phone compared to thousands of data points in
an industrial processing.

n Industrie 4.0 and the Industrial Internet of Things (IoT) provide impetus.

n Automated systems have always produced large amounts of data which
typically have been left ‘unused and unexplored’.

Ø Software Sensors and Analytics in industrial applications can produce
surprisingly fast returns on investment – e.g. the faster measurement,
prediction, early-warning, etc of process and equipment failures
before they happen such as production stops and lost production
time to whole batches (runs).

n Convincing conservative chemicals, materials and pharmaceutical
companies needs good business cases with predictable returns on
investment.
Ø Also provides an opportunities to move from CAPEX to OPEX.



Acknowledgements: My CPACT research colleagues past and present and
CPACT member companies for their R&D challenges and CASE Studies

Thankyou to Dr Dave Berry for the kind invitation

and of course you for your attention

I will be happy to answer questions


