

Particle Dispersion in Liquid Formulation

Wednesday 16 December 2020 Online Meeting

Welcome to Particle Dispersion in Liquid Formulation

The Formulation Science & Technology (RSC-FST) and Particle Characterisation (RSC-PC) interest groups of the Royal Society of Chemistry are organising a conference this joint event. The RSC-FST is the leading scientific organisation dedicated to product formulation and acts as a community for the exchange of knowledge in formulation across many scientific disciplines and industrial applications, including pharmaceuticals, cosmetics, foods and detergents. The RSC-PC provides a forum for those with a common interest in ways to dimensionally characterise single or assemblies of particles, in the solids handling, solids fabrication and general solid particulate industries.

As a charitable organisation, both interest groups work for the benefits of their members and further the awareness of the wider chemical science community. They organise many events during the year, including conferences, training days, and networking events. This year we have moved to a virtual platform for dissemination. This has allowed for a wider global reach – please take advantage to network with the formulation and particle characterisation community from across the world during the meeting.

This meeting is based on the premise that for many liquid formulations which include particles, the final state of the particles is not just determined by classic colloid science particle dispersion considerations, but also by a number of other factors. Rarely are fluid flows so intense in liquid formulations that primary particles are broken up. The initial state of agglomeration of multiple primaries, their break-up in the fluid flow and potential coagulation through process, storage and application are all important in determining the final state of the formulated product and thus its properties. For coatings and inks they determine the final colour / opacity and other functional properties, for food they influence mouth feel, for cosmetics they influence skin feel, for drugs they influence efficacy etc. Our talks will focus on particle dispersion across formulation lifetime and we will have poster presentations on formulation processes, particle characterisation and the role of particle dispersion in industry.

Our meeting will have three themes:

- Particle dispersion thermodynamics colloid science overview talk
- Particle dispersion kinetics particles in hydrodynamics topic talks
- Particle characterisation both current methods and new improved approaches 3 talks focus on different stages in manufacture

Thank you for your participation. We hope you find the day both enjoyable and informative.

Organising Committee

Dr Simon Gibbon, AkzoNobel RD&I, UK

Simon is Secretary of the Formulation Science and Technology Group, he has an appreciation of the challenges of successful formulation, having spent over 30 years working on formulations from non-stick cookware, through personal care and cleaning, to oil recovery. He is currently Corrosion Protection Community of Practice Leader for AkzoNobel, responsible for knowledge management across the company, where advances in characterisation provide the mechanistic understanding which drive the continually improving corrosion protection formulations.

Dr Phil Gill, Cranfield University, UK

Phil is a committee member of the Formulation Science and Technology Group, and is a physical chemist specialising in characterising and formulation of solid propellant chemistry. He is a nationally recognised expert in the field of energetic materials with over 20 years' experience. His research team is focused on the life assessment, manufacture and formulation of solid propellants. Current research topics include: (i) resonant acoustic mixing (RAM) to formulate the next generation composite rocket propellants; (ii) understanding the swelling and gelling behaviour of nitrocellulose for an improved understanding of min-smoke propellants.

Sam Peel, International Flavors & Fragrances, The Netherlands

Sam is a committee member of the Formulation Science and Technology Group. He has a Masters' degree in Formulation Science from Greenwich and an undergraduate degree in Chemistry from Warwick. He lives in The Netherlands, where he currently works for International Flavors & Fragrances.

Dr Claudio Pereira da Fonte, The University of Manchester, UK

Claudio is a Lecturer at the Department of Chemical Engineering and Analytical Science of The University of Manchester. His research interests are on the fundamental understanding of flow and transport phenomena in industrial mixing processes, with special focus on operations that involve rheologically complex liquids exhibiting high viscosity, elasticity or solid-like properties (such as shampoo, hair conditioners, mayonnaise, etc.). His research applies a combination of theory, and advanced computational (CFD) and experimental techniques (PIV, PLIF, high-speed shadowgraphy) to develop new processes and to deliver practical solutions to industrial mixing challenges.

Dr Helen Ryder, The University of Manchester, UK

Helen is the Chair for the Formulation Science and Technology Group. Helen obtained her PhD at The University of Manchester working on 'The Behaviour of Surfactant Lamellar and Gel Phases Under Flow'. She is currently a Research and Facilities Manager for Henry Royce Institute, the UK's National Centre for Advanced Materials. Helen specifically supports the extensive and innovative imaging and characterisation facilities at The University of Manchester.

Dr Stephen Ward-Smith, Malvern Panalytical, UK

Steve has worked for Malvern Panalytical for 25 years, and is currently one of the segment leaders in the Pharma and Food area looking after the regulatory pharma, food, agrochemical and personal care areas. He is also chair of ISO TC281 in fine bubble technology and an expert and convenor in ISO TC24 SC4 in sizing methods. He has a BSc from the University of Manchester in Chemistry, a MSc in Biomolecular Technology from the Leicester University and a PhD in Chemistry from the University of Nottingham.

3

Programme (all times UK GMT)

LOCATION: O	nline – Zoom/YouTube Meeting
09:45-10:00	Please join the online event either Zoom or YouTube – details in joining email
10:00-10:10	Welcome - Dr Simon Gibbon
Session 1 – Dr	· Simon Gibbon (Chair)
10:10-11:10	Industrial Practices & Challenges Posters – watch presentations online now – facilitated by Dr Simon Gibbon
11:10-12:10	Equipment Supplier Posters - watch presentations online now – facilitated by Dr Stephen Ward-Smith
12:10-12:55	Theme 1 – Particle dispersion – thermodynamics – colloid science Talk 1 – <u>Particle Dispersion for Formulators</u>, Professor Steven Abbot, Steven Abbott TCNF Ltd
12:55-13:25	Formulation Science and Technology Interest Group AGM Dr Helen Ryder, RSC-FST Chair
13:25-14:00	LUNCH BREAK
Session 2 – Dr	· Claudio Fonte (Chair)
14:00-14:30	Theme 2 – Particle dispersion – kinetics – particles in hydrodynamics Talk 2.1 – <u>An investigation of the performance of mixing systems for viscous</u> <u>solid-liquid mixing using CFD-DEM</u>
14:30-15:00	Talk 2.2 – <u>Dispersion of Fine Powders in Liquids</u> Dr N. Gul Özcan-Taşkın, Loughborough University
Session 3 – Dr	Helen Ryder (Chair)
15:00-15:20	Theme 3 – Particle characterisation – both current methods and new improved approaches Talk 3.1 – <u>Particle characterization in formulation, pharmaceutical</u> <u>particulate material quality control</u>
15:20-15:40	Dr Richard J Tweedie, Particulate Sensors Ltd Talk 3.2 – <u>Breaking from the laboratory – On line and at line characterisation</u> <u>of particles</u> Dr Stephen Ward-Smith, Malvern Panalytical
15:40-16:00	Talk 3.3 – Combining Methods for Particle Size Dispersion Measurement in a Research and Development Environment Dr Kerstin Jurkschat, OMCS, University of Oxford
Session 4 – Dr	[·] Simon Gibbon (Chair)
16:10-16:40	Integrated Examples - "beginning to end" Talk 4.1 – Material 1 – <u>Sustainable mineral/microfibrillated cellulose</u> <u>composite formulation additives: Properties and uses</u> Dr David Skuse, FiberLean Technologies Limited
16:40-17:10	Talk 4.2 – Material 2 – <u>From particles to an ice-repellent coating</u> Dr Emily Haas, Promethean Particles
17:10-17:30	Summary and close: Session chairs
4 INTEREST GROUP	Please visit the RSC-FST website at: http://formulation.org.uk/ Please visit the RSC-PC website at: http://my.rsc.org/groups/home/118 Please contact the RSC-FST: secetary@formulation.org.uk

Abstracts - Industrial Practices & Challenges Posters (10:10-11:10)

Industrial Poster 1 - EXAMPLE PROCESS CHALLENGES IN NANOSUSPENSION FORMULATIONS AND APPLICATIONS

R Palaparthi^{1,2}, Barnamala Saha³

¹ Anagha Consultants, Bhagyanagar 500050, INDIA

² Anagha Consultants LLC, Hockessin DE, USA

³ Amity School of Engineering and Technology, Amity University Haryana, INDIA

Contact Email: rpalaparthi@anagha.consulting

Specialty inks and some niche pharma formulations can be presented in the form of suspensions of nano particles. When they are prepared in a top down approach, larger size particles are milled to the required size using appropriate energy input, in the presence of surfactants for surface stabilization. Such suspensions are either used as is or subjected to downstream process steps for use in final applications. Characteristics like particle size distribution, shelf-life, and rheology impact their performance during the end-use. For a given chemistry, the preparation method of the suspension, batch sizes, and the conditions of the downstream process steps can significantly impact the performance of the finished products.

This poster discusses a couple of example challenges faced in a real-world scenario related to getting a reproducible nanosuspension product at one scale and scaling it up. It shows how structured approaches characterizing the materials, process, and understanding the underlying materials-process interactions, help address these challenges and achieve consistency in the finished product performance. Attention to such details during early stages of process development in an industry can result in significant cost-savings downstream.

Industrial Poster 2 - <u>TiO2 nanoparticle dispersions studied by sedimentation analysis: Hansen</u> <u>Parameters vs. DLVO interpretations</u>

*Lucie Delforce*¹, *Evamaria Hofmann*², *Véronique Nardello-Rataj*¹, *Jean-Marie Aubry*¹ ¹ Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, Lille, France

² Univ. Regensburg, Department of Physical Chemistry, 93051 Regensburg, Germany Contact Email: <u>lucie.delforce@univ-lille.fr</u>

Titanium dioxide nanoparticles (TiO2 NPs) are among the most widely used NPs due to their interesting optical and catalytic properties. Most applications require their dispersion in fluid or solid matrixes. It is of first importance that NPs be and remain homogenously dispersed in the matrix to achieve optimal properties and stability. Hansen Dispersibility Parameters (HDP)¹ have been shown to be an effective approach for rationalizing and predicting the stability of various types of NP dispersions including $TiO_2^{1,2}$. However, it is not excluded that interparticle electrostatic interactions, not considered in Hansen's approach, also play a significant role, especially for organic solvents having a notable dielectric constant^{3–5}. In this work, we discuss the respective contributions of DLVO and non-DLVO interactions in the stability of TiO₂ P25 nanoparticles dispersions, with a special emphasis on the relevance of the HDP concept to rationalize non-DLVO interactions in organic solvents.

For that purpose, zeta potential measurements in aqueous media and in 20 organic solvents are carried out to identify dispersions for which the stability can be explained by the DLVO theory from those for which the stability results from more specific NP-solvent interaction. These latter solvents are used to build the Hansen Dispersibility Sphere of TiO_2 P25 with a Turbiscan as stability analyser. This light scattering method provides detailed information regarding the destabilization mechanisms of dispersions i.e. agglomeration and flocculation of NPs, which reflect the balance between interparticle attraction and electrostatic repulsion^{6–8}.

Transmitted light monitoring showing TiO2 coagulation

References

(1) Süß, S.; Sobisch, T.; Peukert, W.; Lerche, D.; Segets, D. Determination of Hansen Parameters for Particles: A Standardized Routine Based on Analytical Centrifugation. Adv. Powder Technol. 2018, 29 (7), 1550–1561.

(2) Wieneke, J. U.; Kommoß, B.; Gaer, O.; Prykhodko, I.; Ulbricht, M. Systematic Investigation of Dispersions of Unmodified Inorganic Nanoparticles in Organic Solvents with Focus on the Hansen Solubility Parameters. Ind. Eng. Chem. Res. 2012, 51 (1), 327–334.

(3) Janusz, W.; Sworska, A.; Szczypa, J. The Structure of the Electrical Double Layer at the Titanium Dioxide/Ethanol Solutions Interface. Colloids Surf. Physicochem. Eng. Asp. 1999, 152 (3), 223–233.

(4) Lyklema, J. Principles of Interactions in Non-Aqueous Electrolyte Solutions. Curr. Opin. Colloid Interface Sci. 2013, 18 (2), 116–128.

(5) Rosenholm, J. B. Evaluation of Particle Charging in Non-Aqueous Suspensions. Adv. Colloid Interface Sci. 2018, 259, 21–43.

(6) Woo, S. H.; Min Gu, L.; Rhee, C. K. Sedimentation Properties of TiO 2 Nanoparticles in Organic Solvents. Solid State Phenom. 2007, 119, 267–270.

(7) Liu, Z. Q.; Yang, X.; Zhang, Q. TURBISCAN: History, Development, Application to Colloids and Dispersions. Adv. Mater. Res. 2014, 936, 1592–1596.

(8) Luo, M.; Qi, X.; Ren, T.; Huang, Y.; Keller, A. A.; Wang, H.; Wu, B.; Jin, H.; Li, F. Heteroaggregation of CeO2 and TiO2 Engineered Nanoparticles in the Aqueous Phase: Application of Turbiscan Stability Index and Fluorescence Excitation-Emission Matrix (EEM) Spectra. Colloids Surf. Physicochem. Eng. Asp. 2017, 533, 9–19.

Industrial Poster 3 - <u>The Importance of Dilution Process and Solvent Selection on Particle Size</u> <u>Measurements</u>

Margaret Hwang, Jyo Lyn Hor, David Adrian Dow, Dow Performance Silicones Process R&D, Midland, MI, USA Email: <u>MYHwang@Dow.com</u>

Dispersion of solids drives the product quality for filled materials such as liquid silicone rubber (LSR) and antifoam (AF) compounds; both are made by blending silica into a silicone matrix. An important indicator of filler incorporation is particle size. However, when using laser diffraction to size particles in diluted samples, the selection of solvent and the dilution process can affect the apparent particle size of silica. In this presentation, we highlight some considerations for selecting a suitable solvent for measuring silica particles in dilute solution. Because sufficiently high shear stress may break down agglomerates and lead to smaller apparent particle sizes, physical properties to consider include the viscosity of the solvent and the shear stress imposed on the system during the dilution process. On the other hand, interactions between the solvent and the particles or between the solvent and the matrix can either lead to agglomeration or further dispersion of particles. Therefore, when a product is changed significantly, it is necessary to evaluate whether the current dilution and solvent combination is able to capture those changes.

Industrial Poster 4 - <u>Challenges of assessing number-based particle concentration and the</u> <u>development of a quantitative method using DCS</u>

Beth A. Hinchliffe¹, Annhelen Lu², Mohammed Alkattan², Caterina Minelli¹ ¹ National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK ² OxSonics Therapeutics, The Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA Email: <u>beth.hinchliffe@npl.co.uk</u>

Number-based particle concentration is an important attribute of industrial particle formulations which enable assessment of product batch-to-batch variability, and measurement of dosage for therapeutic and medical applications. However, its measurement accuracy and precision remain a challenge to industry due to the lack of relevant reference materials and standards. Collaboration between OxSonics and NPL has resulted in the development of a method to measure number-based particle concentration using Differential Centrifugal Sedimentation (DCS), with lower variability than reported by Particle Tracking Analysis (PTA).

Industrial Poster 5 - <u>Osmotic swelling as a key for perfect nanosheets dispersion: From water to</u> <u>organic solvents</u>

Dudko Volodymyr, Lina Mayr, Josef Breu

Department of Inorganic Chemistry I and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.

Contact Email: Volodymyr.dudko@uni-bayreuth.de

Layered silicates have a wide range of applications due to their unique platelet like structure, high aspect ratio, and natural abundance. Particularly in nanocomposites, where silicates improve mechanical properties, decrease gas permeability and significantly enhance flame retardancy and thermal properties. In order to obtain these desirable properties, the delamination into single layers is essential; otherwise, the obtained composite exhibits micro-composite structure with two separate phases without a synergistic enhancement in properties.

The conventional method of liquid-phase exfoliation are not suitable for the fabrication of high aspect ratio filler due to high shear force exceeded on the clay particles, which leads to the diminishing of the aspect ratio. Osmotic swelling is an alternative method, which allows a gentle thermodynamically allowed delamination with the preservation of aspect ratio of pristine mineral. So far the osmotic swelling were limited to the water systems and the range of applications would be further expanded if clay delamination could be achieved in non-aqueous solvents. For this purpose, so-called "organophilic" clays have previously been developed but, quite often, the materials thus prepared show poor delamination.

We are going to present the straightforward methodology to achieve perfect delamination to the single platelets in organic solvents and water making possible numerous new formulations. The resulting dispersion is infinitely stable due to electrostatic stabilisation and can be processed with numerous industrial methods including slot die and spray coatings.

Watch the 3-minute flash poster presentation here

10

Industrial Poster 6 - Highly Dispersible Kaolin for Printing Inks

Anabelle Elton-Legrix, Andrew Curtis, Imerys Minerals Ltd, St Austell, UK Email: <u>anabelle.legrix@imerys.com</u>

The inherent hydrophilic nature of kaolin particles make them well suited for incorporation into water borne liquid systems, but it is also of interest to disperse fine kaolin particles for solvent based applications, in particular non polar and oil based offset inks. Here we focus on using fine platy kaolins (with median particle size down to 0.2 micron by sedimentation) in heatset inks used for printing high gloss magazines. The fine kaolin particles need to be well dispersed with absence of aggregates or agglomerates in order to reduce the surface roughness of the printed ink layer and maintain high final printing gloss (1).

Mechanical solutions including suitable grinding and milling of fine kaolin particles are commonly used in the minerals industry, allowing easier dispersion of kaolin particles to a suitable and acceptable fine size and reduced aggregates when incorporated in the oil or solvent. However, agglomerates can still be present due to the incompatibility of surface chemistry between the hydrophilic kaolin and the oleophilic dispersion medium. Suitable surface treatments can be used to increase the compatibility of the kaolin surface in oil and previous literature studies (for example 2) have shown promising results using long chain amines and polyisobutylene-based stabiliser with a succimide/amine head group for dispersion in non polar solvents.

Here we have initially used a simple and effective sedimentation test in the ink petroleum distillate to allow screening of a wider range of amine and silane chemistries, with the aim to find the optimum dosage and treatment for effective dispersion of particles and sedimentation of treated kaolin into a hard compact layer. The most promising treated kaolins were incorporated into the full ink varnish (based on phenolic modified rosin, alkyd, veg oil and mineral distillate) up to 15wt% addition and printed onto polyester film to measure print gloss compared to an unfilled ink varnish. High print gloss was confirmed for well dispersed ultrafine kaolins and examination of the printed surfaces using Scanning Electron Microscopy tilted images showed a significant reduction in surface micro-roughness. Full pigmented inks also gave better dispersion on the rollers of a triple roll mill and high print gloss at high kaolin content. Work is ongoing to consider the health and safety hazard of the treatments, minimise the viscosity for ease of addition onto dry kaolin and optimise the cost performance of the treated kaolin by considering blends of long chain and bulky amines as suggested in publications on other minerals (for example 3).

1. Legrix A., Curtis A., High Performance Kaolins for Lithographic Inks, ECS conference proceedings, Nuremberg, April 2015 – <u>https://360.european-</u>

<u>coatings.com/videos/high_performance_kaolins_for_lithographic_inks--</u> <u>VIVI_add6724f02ac8865ac2d877862989a468263909c</u>

 Zhang Y., Gittins D.I., Skuse D., Cosgrove T., van Duijneveldt J.S., Nonaqueous Suspensions of Surface-Modified Kaolin, Langmuir 2007, 23, 3424-3431 – <u>https://doi.org/10.1021/la063033m</u>
 Leach E.S.H, Hopkinson A., Franklin K., van Duijneveldt J.S., Nonaqueous Suspensions of Laponite and Montmorillonite, Langmuir 2005, 21, 3821-3830 – <u>https://doi.org/10.1021/la0503909</u>

Watch the 3-minute flash poster presentation here

11

Industrial Poster 7 - Powder Incorporation into Liquids using Ytron ZC1

James C. Bacon, Chris D. Rielly, N. Gül Özcan-Taskin

Loughborough University, Dept. of Chemical Engineering, Loughborough, LE11 3TU, UK Contact Email: <u>J.C.Bacon@lboro.ac.uk</u>; <u>CDRielly@lboro.ac.uk</u>; <u>N.Ozcan-Taskin@lboro.ac.uk</u>

The introduction of nanoparticles in new formulations has resulted in enhanced product performance or entirely new product properties that cannot be achieved otherwise. Adhesives, coatings, packaging, catalysts, paints and inks, sunscreens are a few examples. The first step in the production of final or intermediate products in the form of nanoparticulate dispersions is the incorporation of a dry powder into a liquid, which is often performed using a stirred tank [1]. Previous work on powder incorporation has therefore focused on stirred tanks, with only one study which made use of a batch rotor-stator[2]. Incorporation is then followed by a deagglomeration stage with power-intensive devices, such as inline rotor-stators, which are commonly used for large scale manufacture of such products.

In this project, the powder dispersion performance of an in-line rotor-stator, Ytron ZC1, has been studied. The specific design of Ytron ZC1 allows the introduction of the powder directly into the rotor-stator head; subsequently the dispersion can be recirculated to achieve deagglomeration. The part of the study presented here is concerned with powder incorporation with the objective of establishing the performance of the device. Concentrations up to 10% w:w were studied by making incremental additions of 1% w:w silica powder into water, over a range of flow rates. Air velocity values at the powder inlet were also measured.

For a given rotor-stator head and speed, there exists a range of liquid flow rates over which the incorporation rate is highest. Initially, increasing the flow rate increases the incorporation rate and above an optimum range, incorporation slows down and eventually ceases. This is due to the liquid starting to flow up the powder inlet which can have severe consequences if the partly wetted powder forms a soft solid, blocking the powder inlet as this would require stopping the operation to dismantle and clean.

It was shown that using the Ytron ZC1, the incorporation rate can be maintained constant over a wide range of powder concentrations compared to surface additions (Figure 1). This is in agreement with previous findings reported with Ytron Y-Jet, a batch rotor-stator and holds as long as the increased concentration does not result in non-Newtonian rheology.

It could be shown that the air suction velocity at the powder inlet is indicative of powder incorporation performance. This would be of significant benefit for industrial practice as trials can be run with just liquids to identify optimum operating conditions, saving time and costs associated with materials and waste.

References:

 Özcan-Taskin, N.G. (2015) Dispersion of fine powders in liquids- particle incorporation and size reduction in Pharmaceutical Blending and Mixing, Wiley DOI:10.1002/9781118682692
 Özcan-Taskin, N.G. (2013) Incorporation of nanoparticle clusters into a liquid using a proprietary design mixer, Ytron Y Jet, Chemical Engineering Research and Design, 1-7 (DOI: 10.1016/j.cherd.2013.03.019)

Industrial Poster 8 - <u>The importance of particle dispersions in paint formulations and the need for</u> <u>better characterization methods</u>

Dr David Elliott

AkzoNobel Decorative Paints, Slough, UK

Paints comprise dispersed particles of several kinds having wide ranges of particle size from tens of nanometres to hundreds of microns and a variety of shapes and aspect ratios. These include polymer latex particles and Titanium Dioxide white pigment at the smaller (colloidal) size end of the range, with near spherical shapes and mineral extender particles with largest particles of more than 100 microns and with diverse shapes from blocks to fibres and plates. Much R&D effort in the paint industry is spent on formulating to achieve stability of these complex dispersions, so that long product shelf-lives can be offered and so colours can be made accurately and reproducibly.

Formulating work and problem solving usually takes the form of extensive designed experimentation and time-consuming stability testing. Attempts to gain deeper understanding and use more fundamental scientific approaches are hindered by the limitations of current characterisation methods, when it comes to complex, multi-modal, concentrated dispersions like paints, which typically have particle volume concentrations in the range of 20 to 50%.

Industrial Poster 9 - Particle incorporation in liquid – P&G's perspective

Ke-ming Quan

Corporate Engineering Research Laboratory, 8256 Union Centre Boulevard, West Chester, OH 45069 USA

Email: <u>quan.k@pg.com</u>

Many P&G formulated products require particle incorporation in liquid. The quality of incorporation directly impacts product performance and stability. At present, process development for particle incorporation is conducted empirically. There is significant challenge to scale lab and pilot plant learnings to production.

A formulation in process typically has a mixture of particles, drops and gas bubbles. It is highly desired to have breakthroughs in inline measurement to enable multiphase particle size (distribution) characterization. At the same time, fundamental and/or semi-empirical models are also needed to guide process optimization and scalability. An example of particle incorporation will be given to show how measure and model can help to solve an industrial problem.

Industrial Poster 10 - A Statistical Approach to Ink Formulation

<u>Anna-Marie Stobo</u>, David Johnson, Lynn Donlon, Rachel Findlay, Jodie Clark, Adam Todd, Ross Urquhart, Martin Sondergaard CPI, John Walker Road, Coxon Building, NETPark, Sedgefield, TS21 3FE anna-marie.stobo@uk-cpi.com www.uk-cpi.com / www.lee-bed.eu

LEE-BED is a Horizon 2020 project that aims to reduce development time of materials and process for the production of hybrid ele ctronics. CPI-Formulation's focus is on ink, adhesive and composite formulation, while CPI-Electronics are optimising testing procedures for roll-2-roll printed components. DTI is working on scaling up the synthesis of a range of nanoparticles, including copper nanoparticles. Other partners include Fraunhofer, TNO, ITENE, RISE, VSParticles, TPU, Swarovski, Maier, Acceona and Graphetic.

Abstracts - Equipment Supplier Posters (11:10-12:10)

Equipment Supplier Poster 1: <u>Static Multiple Light Scattering for Monitoring the Stability and</u> <u>Particle Size of Concentrated Dispersions</u>

Gordon Irvine¹, C. Tisserand², R. Ramsch², J. Cohen², P. Bru¹, G. Meunier²

¹ Formulaction Inc, Worthington, OH, USA

² Formulaction, Toulouse, France

Contact Email: gordon.irvine@formulaction.com

Characterization of colloidal systems and investigation of their stability and size evolution in their native state (i.e. without denaturation) is of prime importance for formulators to optimize the development of new products.

The Static Multiple Light Scattering (SMLS) technique utilized by the Turbiscan Lab instrument can monitor physical stability and measure mean particle size in concentrated dispersions between 0.0001 and 95 vol% for particle sizes between 10 nm and 100 μ m. The Turbiscan uses an incident light source of 880 nm acquiring the backscattered and transmitted signal whose intensity is directly related to particle diameter and concentration. The signal intensity enables measurement of the mean spherical equivalent diameter when the refractive indices of continuous and dispersed phase as well as the particle concentration are known, according to the Mie theory.

This technique has the advantage to measure such properties in a single click without sample preparation or dilution the concentrated suspensions. Other optical techniques such as DLS or PTA can perform size measurement but only at a very high dilution which can denature agglomerates and give an erroneous size of the native particles. In this poster, we present a comprehensive outline of multiple studies where particle size is measured in concentrated dispersions. We also show how overall formulation stability, particle size, and particle migration kinetics can be determined from the same Turbiscan data set.

Mean size versus concentration (v/v) for titanium dioxide particles

Watch the 3-minute flash poster presentation here

Please visit the RSC-FST website at: <u>http://formulation.org.uk/</u> Please visit the RSC-PC website at: <u>http://my.rsc.org/groups/home/118</u> Please contact the RSC-FST: <u>secetary@formulation.org.uk</u>

17

Equipment Supplier Poster 2: <u>Determination of Stability and Particle Size of Colloids in Lab or</u> <u>Online</u>

André Giese, Kai Gossmann, Philipp Schreier, Margret Böck, Hanno Wachernig Colloid Metrix GmbH, Meerbusch, Germany Contact Email: <u>giese@colloid-metrix.de</u>

In addition to the final product properties, the main objective in the formulation of colloidal dispersions is the particle size and the stability against agglomeration.

The particle size is of great importance, but also their chemical environment.

For this purpose, the zeta potential, which is generally regarded as a measure of the mutual repulsion of the particles by electrostatic interactions, is a key parameter. The zeta potential and thus the stability of dispersions is influenced by the suspension properties. By autotitration, the formulator can investigate the influence of pH, salt concentration and additives on stability, and optimize the required quantities accordingly.

The determination of the particle surface charge is often also of great interest. It allows an estimation of free binding sites or adsorption capacity that can be used for the functionalization of the particles, be it for further stabilization against aging processes or for changing the final product properties.

This kind of characterization can be optimally performed with the streaming potential / streaming current method in combination with an autotitration, even at high particle concentrations. At such concentrations, the 180° heterodyne dynamic light scattering method is suitable for determining particle size, as it is less susceptible to multiple scattering effects.

On an industrial scale, inline particle size measurement can be interesting. The DLS method mentioned above can be extended to monitor top-down or bottom-up processes in real-time.

Equipment Supplier Poster 3: <u>Routine, ensemble characterisation of electrophoretic mobility in</u> <u>high and saturated ionic dispersions</u>

Jake Austin, Diogo Fernandes, Matthew J. A. Ruszala, Natalie Hill, Jason CW Corbett Malvern Panalytical, Malvern, United Kingdom

Contact Email: jake.austin@malvernpanalytical.com

With the industrialisation of nanoparticle manufacture, the pervasive incursion of nanoparticles into the environment, the need to characterise nano-scale pharmaceuticals and living systems in replicated in vivo conditions, the continuing development of new theories to describe the electrokinetic behaviour of nano-particles in representative ionic strengths and numerous other applications, there is an urgent requirement to provide simple and effective experimental tools to validate these models and explore new systems. Micro-electrophoresis implemented with a diffusion barrier, which isolates the dispersed phase from the electrode surface, is demonstrated as enabling such measurements for the first time, preventing the catastrophic outgassing, precipitation and sample degradation observed when the dispersed phase is in close proximity to the electrode surface. Using a measurement of a few minute's duration in a standard laboratory light scattering instrument we reproduce the theoretically predicted phenomena of asymptotic, non-zero electrophoretic mobility with increasing ionic strength, the cationic Hofmeister series dependency, charge inversion and a continuously decreasing variation in mobility with pH as molarity increases.

Equipment Supplier Poster 4: <u>Colloidal Refractometry for Microstructure Characterization of</u> <u>Particle Dispersions</u>

Mansur S. Mohammadi

Biruni Associates

Email: mansur.sultani@gmail.com

This poster introduces a new structural probe for colloidal liquids in their neat unperturbed state. The technique combines two recent advances in refractometry - a generalised equation for the refractive index of particulate systems which contains the size and the volume concentration of the dispersed phase and the advent of digital refractometers which measure the refractive index of turbid dispersions with accuracy. Examples of its application include study of fat globules in milk, coagulation of polymer latex and lamellar dispersions.

Equipment Supplier Poster 5: Vapour Sorption Techniques for Particle Engineering

Sabiyah Ahmed¹, Meishan Guo¹, Majid Naderi¹, Manaswini Acharya¹, and Daniel Burnett² ¹Surface Measurement Systems Ltd., Alperton, London, HA04PE ²Surface Measurement Systems Ltd., 2125 28th Street SW, Suite 1, Allentown, PA 18103, USA Email: mnaderi@surfacemeasurementsystems.com

Drug substances intended for drug delivery to the lungs typically require particle size reduction. High energy processes are typically utilized to produce particles smaller than 10 μ m but these processes are also known to influence crystallinity, which can lead to a reduction in physical and sometimes even chemical stability. Therefore, these materials may be conditioned following micronization before further processing. Such a "deamorphization" step typically involves the treatment of the materials with an appropriate solvent that plasticizes the material and induces crystallization. While the selection of the solvent is critical, the degree of control over the deamorphization process is also very important. A treatment time that is too short may lead to incomplete crystallization of the material, while overtreatment may cause partial dissolution and agglomeration.

In order to estimate the appropriate treatment time, knowledge of the crystallization kinetics may be predicted from Dynamic Vapour Sorption (DVS) studies. Changes in surface chemistry; from a heterogeneous surface property to a homogeneous and low wettability surface property would affect the variability in powder flow behavior and agglomeration which may be monitored using Inverse Gas Chromatography Surface Energy Analyser (IGC-SEA).

Water vapor has been shown to induce crystallization for milled salbutamol sulphate, with one-step mechanism. DVS can be used to investigate moisture-induced crystallization kinetics, over a wide range of temperature and humidity conditions.

Silanisation process has clearly improved the flow properties of D-mannitol in a low-stress environment. iGC-SEA is a fast and accurate way to predict agglomeration and powder flow behavior, using surface energy heterogeneity and work of cohesion as the parameters.

Equipment Supplier Poster 6: <u>Application of NMR Relaxation to Determine the Hansen Solubility</u> <u>Parameter (HSP) of Particles</u>

Ravi Sharma¹, Shin-Ichi Takeda² Dave Fairhurst³, Stuart Prescott⁴, Terence Cosgrove⁵

¹ Mageleka, Inc., Winter Park, Florida, USA

² Colloid-Techno-Consultants,Ltd., Osaka, Japan

³ Colloids Consultants, Ltd., Aiken, Fl, USA

⁴ University of New South Wales, Australia

⁵ Bristol University, UK

Contact Email: Ravi@mageleka.com

The ease with which particles can be dispersed in a liquid is dependent on the details of the liquid to be used and the surface chemistry of the particles. The particle wettability, as controlled by dispersion forces, dipole-dipole forces and hydrogen bonding is the primary influence. Being able to predict the appropriate liquids to use for a given particle is of considerable interest to the formulator, and there has been much interest in semi-empirical routes to selecting the optimum solvent (or solvent mixture) for pigment particles.

The Hansen Solubility Parameters (HSP) approach, originally devised to study polymer-solvent compatibility, can be applied to solid materials. Determination of the particle HSP, traditionally by visual observation, is subjective, time-consuming, error-prone, and is only qualitative. Extinction profiles measured over centrifugation time are more quantitative; the influence of density and viscosity of different solvents employed must accounted for and the solids concentration must be chosen with care.

NMR relaxation measurements are sensitive to the same intermolecular forces between solvent and particles with which HSP are concerned. We will show relaxation data obtained using five different nano-size zinc oxide and aluminium oxide powders, each having a completely different surface chemistry, ranging from a high polar component (hydrophilic) to a lower polar component (hydrophobic).

Results suggest that a straightforward, quantitative, and fast instrumental approach to determining the HSP of a nanomaterial is feasible and, further, that NMR relaxation measurement can discriminate between suspensions that may initially appear similar but exhibiting different long-term colloidal stability. In addition NMR relaxation data may potentially be used as a method for quality control of particles. NMR relaxation measurements (made using a low cost, low field table-top device) can be made at almost any industrially relevant solids concentration without requiring further sample preparation; any hydrogen-containing solvent can be used.

The ability to project solid-liquid interactions obtained by NMR relaxation into Hansen space is powerful, is much simpler and easier than sedimentation and can potentially provide formulators with a time-saving method to optimize and select the liquid composition (solvent plus surfactant additives) for desired particle suspension performance.

Watch the 3-minute flash poster presentation here

Please visit the RSC-FST website at: <u>http://formulation.org.uk/</u> Please visit the RSC-PC website at: <u>http://my.rsc.org/groups/home/118</u> Please contact the RSC-FST: <u>secetary@formulation.org.uk</u>

22

Equipment Supplier Poster 7: <u>Preventing Crystallization with the Crystal16 for Successful</u> <u>Parenteral Formulations</u>

Floor Aalders

Technobis Crystallization Systems, Pyrietstraat 2, 1812SC Alkmaar, The Netherlands

Email: floor.aalders@technobis.com

Many drug substances are formulated as parenteral formulations and administrated directly into the systemic circulation in animals and humans. In order to improve their stability and solubility, many parenteral formulations are formulated using a co-solvent. Ampule or vial dosage forms are often co-solvent concentrated formulations. These concentrates are finally diluted before administrated to the patient. Nevertheless, there are many cases known where dilution of drug formulations has the potential to generate conditions where drug concentrations are supersaturated. Under these circumstances, drug precipitation/crystallization is likely to take place. Drug precipitation after parenteral administration may cause mechanical or chemical irritation at the injection site, and potentially even more serious systemic effects. With the use of the Crystal16, solubility measurements may be performed to help avoid vulnerable formulations and foresee mechanical and chemical irritation at injection site. In the phase diagram of lorazepam was showed how high concentrations of the drug and low ratios of glucose lead to a stable solution in which crystallization does not occur.

Equipment Supplier Poster 8: <u>Shining a Light on Particle Characterisation at the Diamond Light</u> <u>Source</u>

Claire Pizzey Diamond Light Source, Didcot, UK Email: <u>claire.pizzey@diamond.ac.uk</u>

Diamond Light Source is the UK's national synchrotron science facility, located at the Harwell Science and Innovation Campus in Oxfordshire. Diamond generates brilliant beams of light from infra-red to X-rays which are used to investigate physical and chemical behaviour of materials and processes on the atomic, molecular and cellular scale. Clients range from multinationals to start-ups and SMEs working in sectors as diverse as drug discovery and development, food, electronics, formulation, energy, automotive and aerospace engineering. Investigations of microstructure of formulations are of particular interest to a variety of clients with small angle X-ray scattering among the available techniques used to non-destructively probe nanoparticle morphology and suspension microstructure. Case study examples of work done by Diamond's users and clients will be explored.

Equipment Supplier Poster 9: <u>Use of a Closed Vial Milling System in Investigations of Carbon Black</u> <u>Ink Formulations</u>

Stephen R Bysouth¹, Muhammad Ali²
¹ SARL Automaxion, L'Auvrairie, 50250 Varenguebec, France
² N.E.D University of Engineering & Technology, Karachi, Pakistan
Contact Email: <u>stephen.bysouth@automaxionltd.com</u>

Experimentation in dispersion can be time consuming, messy, consume considerable amounts of materials and consequently, produce large volumes of waste. A product of the development of technology for high throughput experimentation is the Automaxion multi-sample milling system based on planetary milling, which facilitates bead milling in ordinary glass vials. It has been applied to particle size reduction of materials from refractories to pharmaceuticals, comminution of crop protectants, milling of heterogeneous catalysts, cocrystal screening, mechano-chemical preparation of MOF's and the dispersion of pigments in coatings and, as presented here, ink concentrates.

We will show that small samples of carbon black ink concentrates of about 10 ml can be prepared quickly and are suitably equivalent to larger samples prepared using a laboratory recirculating bead mill. Comparisons of particle size, zeta potential and rheology of samples prepared by both techniques are presented and their rheological stability over four weeks is compared.

Abstracts – Oral Presentations

12:10-12:55 - Particle Dispersion for Formulators

Professor Steven Abbott

Email: steven@stevenabbott.co.uk

For too long, the particle formulation community has had to work with inadequate formulation tools. Things are now changing for two reasons. First, a lot of the knowledge is available in free apps, demonstrated live during the talks. Second, the community is realising that the solubility science approach is more powerful than the limited capabilities of classic "dispersion" or "colloid" science. We can now optimize the interactions of solvents, polymers and particles with tools such as Hansen Solubility Parameters and, in a recent development, with hands-on Scheutjens-Fleer theory. With the increading adoption of these new tools, the future for particle formulation science is looking very bright.

https://www.stevenabbott.co.uk

14:00-14:30 – <u>An investigation of the performance of mixing systems for viscous solid-liquid</u> <u>mixing using CFD-DEM</u>

Dr Bruno Blais, Department of Chemical Engineering, Polytechnique Montréal, Montréal. Canada Email: <u>bruno.blais@polymtl.ca</u>

Solid-liquid mixing is a significant process that is critical to pharmaceutical, biomechanical, food processing and other industries. Despite the relevance of viscous solid-liquid mixing applications, the physics governing the suspension of particles in agitated vessels is still poorly understood and historically much less studied in the laminar regime than in the turbulent regime. This can lead to sub-optimal designs and important energy waste or even an incapacity to achieve the desired mixing state. Important criteria that characterize solid-liquid mixing, like the just-suspended speed (Njs) and the homogeneity of the suspension, are difficult to predict. Consequently, engineers often rely on correlations to design solid-liquid mixing vessels. There is a need for more studies on solid-liquid mixing and, more particularly, for new and robust simulation models to predict suspension dynamics.

Complex geometries can be used to meet specific process requirements. For example, the double helical ribbon has shown to achieve good mixing in the laminar regime. However, the simulation of solid-liquid flow in such rotating systems is challenging. To deal with this issue, an innovative Euler-Lagrange model in a non-inertial frame of reference that is suitable to a wide range of geometries regardless of their complexity was developed. It is based on an unresolved CFD-DEM approach that combines the Discrete Element Method (DEM) for the solid particle dynamics and CFD techniques for the fluid phase [1].

First, the full model is introduced with a description of the coupling strategy for the fluid and the solid phases and the validation of the CFD-DEM model against experimental data and numerical studies previously carried in our lab [1,2], Then, using this model, several agitator geometries commonly used for viscous liquid, such as the double helical ribbon, the anchor or the Paravisc, are compared. This comparison is based on typical solid-liquid mixing parameter such as the minimum agitation speed required to obtain a complete suspension (Njs), the cloud height (CH) or the power number (Np). Finally, we conclude on the role of numerical modeling in investigating multiphase mixing.

References:

[1] B. Blais, M. Lassaigne, C. Goniva, L. Fradette, and F. Bertrand, "Development of an unresolved CFD–DEM model for the flow of viscous suspensions and its application to solid–liquid mixing," Journal of Computational Physics, vol. 318, pp. 201-221, 2016/08/01/ 2016.

[2] M. Lassaigne, B. Blais, L. Fradette, and F. Bertrand, "Experimental investigation of the mixing of viscous liquids and non-dilute concentrations of particles in a stirred tank," Chemical Engineering Research and Design, vol. 108, pp. 55-68, 2016.

Please visit the RSC-FST website at: <u>http://formulation.org.uk/</u> Please visit the RSC-PC website at: <u>http://my.rsc.org/groups/home/118</u> Please contact the RSC-FST: <u>secetary@formulation.org.uk</u>

27

Figure 1 : Liquid volume fraction profile for a solid-liquid mixing operation agitated by a pitched blade turbine at an impeller velocity of (a) 250 RPM (b) 350 RPM (c) 450 RPM

Figure 2 : Suspension of 3mm particles in a viscous fluid using a helical ribbon

14:30-15:00 - Dispersion of Fine Powders in Liquids

N. G. Özcan-Taşkın

Loughborough University, School of Chemical Engineering, Loughborough Leicestershire LE11 3TU UK

Email: N.Ozcan-Taskin@lboro.ac.uk

The formulation and hence manufacturing processes of several products- from pharmaceuticals to personal care, paints and inks to cosmetics, food to minerals and water treatment- require the incorporation of powders into liquids. In addition, the recent decades have seen the development of several novel, high performance products with nanoparticles in their formulation. Large scale manufacture of these to enable market introduction has often been a challenging task for process engineers and scientists.

Fine powders tend to form large clusters that float at the liquid surface due to apparent low density resulting from air entrapped within the agglomerates; poor wettability can also play a role(1). Following on from the incorporation of the powder into the liquid, deagglomeration is required to achieve as fine a dispersion as possible. This talk will briefly go through powder incorporation highlighting some recent advances and continue with findings relating to deagglomeration. A few brief comments will be added on the delamination of nanoclays. Outlines of a few case studies will also be presented.

Powder incorporation can be performed using a stirred tank which may also act as the feed tank for a more energy intensive device used to achieve deagglomeration. In addition to conventional impellers, proprietary design batch rotor-stators(2) or in-line rotor-stators(3) can also be used for the purpose. These allow the introduction of the powder into the regions of high liquid velocities and have been shown to be advantageous for formulations that have a powder concentration greater than a few % by weight.

Deagglomeration of fine powders can occur through different mechanisms: erosion of small fragments off the surface of agglomerates, rupture of large agglomerates that result in smaller agglomerates which are broken up further or through the shattering of an agglomerate into its finest fragments in a single event. The process can be monitored by particle size measurements and careful data analysis would indicate the dominant mechanism through of breakup(4,5), providing useful input in equipment choice/process design(6). Such measurements also indicate how fine a dispersion can be achieved. Whilst the mechanism of deagglomeration and dispersion fineness are primarily defined by the particular formulation, i.e. regardless of the choice of process equipment or operating conditions, the kinetics of deagglomeration depend on the flow field generated by the specific design and operation of an equipment. In addition to these, dispersion rheology, due to both the addition of powder and deagglomeration or delamination in the case of nanoclays can play an important role.

Knowledge from such studies has proven to be useful in process design and scale up, both of which are challenging tasks, especially considering the different devices available on the market(7,8) and the need to use different types of equipment from formulation to manufacturing scale. There has been significant progress made in the area with both experimental studies and numerical modelling. Further work continues and the author is keen to establish collaborations.

References:

1. Etchells, A.W., 2001. "Mixing of floating solids" Plenary lecture ISMIP4, 14-16 May 2001, Toulouse, France

2. Özcan-Taşkin, N.G. (2013) "Incorporation of nanoparticle clusters into liquids using a proprietary design mixer- Ytron Y Jet: particle concentration, addition method, power input, liquid height and scale" Chem Eng Res Des. (DOI: 10.1016/j.cherd.2013.03.019)

3. Bacon, J.C.; Rielly, C.D. (2020) "The incorporation of fine powders into a liquid using an in-line rotor-stator"AIChE Fall Meeting

4. Özcan-Taşkin, N. G.; Padron, G. and Voelkel, A. (2009) "Effect of particle type on the mechanisms" of breakup of nanoscale particle clusters" Chem. Eng. Res. Des., 87, No.4, p: 468-473. Doi: 1016/j.cherd.2008.12.012

5. Özcan-Taşkin, N.G (2015) "Dispersion of fine powders in liquids- particle incorporation and size reduction" Pharmaceutical Blending and Mixing, Editors: Cullen, P.J.; Romanach, R.J.; Abatzoglou, N.; Rielly, C.D. Wiley DOI:10.1002/9781118682692

6. Özcan-Taşkin, N. G.; Padron, G. A.; Kubicki, D. (2016) "Comparative Performance of In-Line Rotor-Stators for Deagglomeration Processes" Chem. Eng. Sci.156 p:186–196.

doi.org/10.1016/j.ces.2016.09.023

7. Özcan-Taşkin, N.G.; Gavi, E.; Kubicki, D.; Wang Y. (2012) "Dispersion of nanoscale silica particles using a novel design stirred bead mill" 14th European Conference on Mixing, 10-13 September, Warsaw, Poland.

8. Gavi, E., Kubicki, D., Padron, G.A., Özcan-Taşkın, N.G. (2018) "Breakup of nanoparticle clusters using Microfluidizer M110-P" Chem Eng Res Des, Volume 132, p: 902-912;

https://doi.org/10.1016/j.cherd.2018.01.011

15:00-15:20 – <u>Particle characterization in formulation, pharmaceutical particulate material quality</u> <u>control</u>

Richard J. Tweedie* Particulate Sensors Ltd, Newcastle-upon-Tyne, UK Email: <u>richard.tweedie@particulatesensors.com</u> <u>www.particulatesensors.com</u>

The twin business imperatives of increasing competitiveness, and reducing risk are common to all manufacturers, if not more so in the pharmaceuticals. This translates into increasing supply chain diversity and product complexity, with a constant pressure on costs, while operating in a highly legislated, regulated environment.

Unit operations involving particulate operations are widespread in the processing of pharmaceuticals, even within the chemical sector; with up to 60% of processes involve particle processing. Therefore maintaining quality control through particle characterization of raw materials and intermediaries is a vital piece of delivering the business objectives.

Despite all the claims and all the hopes, in the last 20 years the capability to characterise particulate systems in-situ has not met with the original expectations. Hence the industry is still dependent on laboratory instrumentation.

As the industry has moved forward so have measurement techniques with improvements to existing methods and an increasing number of new methods aimed at 'Nano' material formulations These recent advances in particle characterization allow a much greater degree of understanding both distribution of particle characteristic and the individual properties such particle shape.

The various options available to make these measurements are discussed in relation to the information required.

15:20-15:40 – Breaking from the laboratory - On line and at line characterisation of particles Dr Stephen Ward-Smith, MRSC Malvern Panalytical, Malvern, UK stephen.ward-smith@malvern.com

Particle characterisation has been a long standing laboratory technique. It has been used at line and on line with varying degrees of success over the last 10 – 15 years. Recent instrument advances in such areas as high concentration DLS / DWS and image analysis, coupled with improved dilution / sampling regimes are increasing interest in this arena. Recent improvements in data and modelling are also important, as equipment which is in constant operation will generate more data than a laboratory instrument, so now the tools to interpret the data generated are also coming of age.

This talk wil survey what is current available and some of the do's and don'ts when it comes to investigating the purchase of on line equipment.

15:40-16:00: Combining Methods for Particle Size Dispersion Measurement in a Research and Development Environment

Dr Kerstin Jurkschat Department of Materials, University of Oxford kerstin.jurkschat@materials.ox.ac.uk

Although various methods are available to measure particle size distributions for a wide range of sizes and concentrations, most of them are best suited to relatively simple systems, i.e. one type of particle in a one or two component dispersion medium. However, real systems are often more complex containing different materials and shapes of particles and stretch the limits of commercially available instruments. In combination with imaging techniques and their analytical capabilities these instrument limits can be extended to gain a better understanding of the systems. To illustrate this, one example where the addition of TEM and EDX methods allowed the study of a complex, environmental sample will be presented.

16:10-16:40 – <u>Sustainable mineral/ microfibrillated cellulose composite formulation additives:</u> <u>Properties and uses</u>

David Skuse

FiberLean Technologies Limited, Par Moor Centre, Par Moor Road, Par, Cornwall, UK PL24 2SQ Email address: david.skuse@fiberlean.com

When pulp and minerals are co-processed in aqueous suspension, the mineral acts as a grinding aid allowing cost effective production of fibrils. Furthermore, this processing uses robust, industrial milling equipment. Mineral/microfibrillated cellulose composite materials produced in this manner have been commercialised under the tradename, FiberLean® MFC. There are 12 000 dry metric tonnes of FiberLean® MFC fibril production capacity in operation, worldwide. Such composites can be prepared using a wide range of virgin and recycled pulp sources and a wide range of minerals, with choices dependent on the end formulation requirements.

The products can be used in a wide range of applications:

- As wet and dry strength additives to enhance the mechanical properties of web-based structures, such as paper, packaging, tiles and boards.
- To enable wet-end coating of optically effective, light weight coatings in graphic applications, in particular, as surfaces for ink-jet printing.
- As a component of grease, moisture and gas barrier systems.
- As the main constituent in products such as non-woven mats.
- As rheology modifiers, for example in paints and oil field formulations.
- As reinforcing additives in composites.

In this presentation we will describe the mineral/microfibrillated cellulose products and demonstrate how the choice of minerals and fibres used in their preparation can affect the end-use properties.

16:40-17:10 - From particles to an ice-repellent coating

Emily Haas¹, Christina Puijk¹, Selina Ambrose¹, Angelo La Rosa², Geraldine Durand², Anna Wojdyla-Cieslak³, Alan Taylor³

¹ Promethean Particles, Nottingham, UK

² London South Bank University (LSBU), Cambridge, UK

³TWI, Cambridge, UK

Email: emily.haas@proparticles.co.uk

Promethean Particles is a pioneer in the manufacture of high specification nanomaterials for a range of applications including pigments, printed electronics, energy capture and storage, functional nanoceramics and coatings.

The company has developed breakthrough innovations in nanoparticle technologies by designing safe and commercially viable liquid dispersions at its multi-material manufacturing plant. Located at Genesis Park, Nottingham, the site manufactures nanoparticles with tonnes-per-year capacities through a patented continuous flow process - making it the largest reactor system of its kind in the world.

Advancements in technology over the years has made nanoparticles accessible to a variety of industries. Operating in a wide range of sectors, the company tailors its process to customer specification by using both large and small-scale reactors to continuously meet demand and maintain quality.

As a partner in the national, Innovate UK-funded project ICELIP, Promethean Particles is involved in the development of super-hydrophobic nanomaterials for use in anti-icing coatings. Since the project contains partners from all parts of the value chain, it provides a great overview of how nanomaterials can be adapted and upscaled using Promethean's continuous flow methodology, to then be formulated downstream into an ice-repellent coating for the aerospace sector. The project primarily focuses on the aerospace sector for end-use, to reduce drag and associated costs while improving fuel efficiency, but the coating technology could benefit several other sectors including, but not limited to, architectural coatings, the oil and gas industry, and ground transportation.

Particle Dispersion in Liquid Formulation: Delegates

We are delighted to attract so many delegates to our online meeting (454). Names and affiliations for those that agreed on list are below (363). Alphabetical by surname.

Name	Affiliation
Professor Steven Abbott	Steven Abbott TCNF Ltd
Mr Mostafa Abdine	FOSROC
Mr Akeem Abiodun	Intecil Products Limited
Professor Michael Adams	University of Birmingham
Dr David Adrian	Dow
Dr Attia Afzal	The University of Lahore
Dr Sabiyah Ahmed	Surface Measurement Systems
Other Rana Ahmed	Mawlana Bhashani Science and Technology University
Mrs Swetha Ainampudi	GlaxoSmithKline
Mr Emmanuel Ajayi	Formulation Science & Technology Interest Group
Mr Emad Alavi	Amirkabir University of Technology
Mr Robert Albright	FMC
Mr Bahjat Alhasso	University of Huddersfield
	Department of Textile Engineering, NED University of
Dr Muhammad Ali	Engineering & Technology, Karachi
Dr Ndd Achrof Ali	Associate Protessor, Mawlana Bhashani Science and
Dr Maharana di Alliattar	
Dr Nonammed Alkattan	
Dr Konan Ambardekar	Almac Group
Dr Kris Angamutnu	GlaxoSmithKline
Mr Mond Ajmai Ansari	Laid off worked for Baker Hugnes
Mr Knaini Anshari	Universitas Gadjan Mada
Di Justice Archer	
Mr Vasar Asgari	
Mr Akshal Ashok Kulviak	
Dr Melodie Aurio	L Oreal Malvern Danalytical
INIT Jake Austin	Independent Consultant
Dr Carlos Avila	Independent Consultant
IVII Jallies Daluli Dr Daval Rabati	Acton University
Dr Appa Giulia Paldussi	Aston University Chiesi
Mr Nelsen Parries	University of Carababa
IVII INEISUII Balfilus Drofossor Androw Pouly	University of Loods
Professor Andrew Dayly	Our Houghton
Mr Alovandro Poirac	Quaker Houghlon Hoio Matoriale Dortugal
Nrc Mariluz Datancur Siarra	neių materiais - rortugai
ivirs ivianiuz Betancur Sierra	DIC
	Anneuabad Institute of Technology
	NOVA LADOFALOFIES
	Conversity of Alberta

RSC INTEREST GROUP FORMULATION SCIENCE & TECHNOLOGY

Name	Affiliation
Mr Jonathan Bird	Guggle and Torquith Ltd
Professor Bruno Blais	Polytechnique Montreal
Dr Patricia Blanco-Garcia	Johnson Matthey
Dr Andréanne Bouchard	FMC
Mr Chouaib Boukaftane	Sappi NA
Dr James Bowen	Open University
Mr Phil Bowles	Impact Fluid Solutions
Dr Mark Bradley	Chemring Countermeasures
Mr Brendan Brady	University of Reading
Dr Carlos Brambila	The University of Sheffield
Mr Mark Brewer	Shell Global Solutions International BV
Mr David Brossault	Cambridge University
Dr David Brown	Verona Pharma
Mrs DAYAN LIZETH BUITRAGO RINCON	UNIVERSITE DE LORRAINE- LRGP
Mr Hubert Buksa	Syngenta
Dr Jim Bullock	iFormulate Ltd
Dr Sean Butterworth	BAE Systems
Dr Stephen Bysouth	Automaxion SARL
Mr Amadeo Cabrera	Symrise
Dr David Calvert	iFormulate Limited
Dr Zeliha Cansu Canbek Ozdil	Bogazici University
Dr Andrés CARDOZO PEREZ	L'Oréal R&I
Mr Gabriele Casalini	Università degli Studi di Milano
Mr Carlos Casas	CIMAV
Dr Alberto Cattazzo	University of Padova
Mr Daniel Cedillo	Lubrizol de México
Mr John Paul Cerroti	Analytical Approaches
Mr Ander Cervellera Dominguez	AkzoNobel
Mr Lim Choon Cheah	CEEBEE Chemicals Sdn Bhd
Professor Rachida Chemini	Univetsity of Science and Technology Houari Boumediene
Ms Pinyu Chen	KU Leuven
Dr Min Chen	Troy Corporation
Dr Shih-Chi Chu	Givaudan
Emer Prof Paolo Ciambelli	University of Salerno
Mr Peter Collins	Peter Collins Coatings Consultancy Ltd
Dr Clare Conboy	Printed Electronics Ltd
Dr Francesco Cornacchia	Malvern Panalytical
Mr Elrick Cornelius	Technobis Crystallization Systems
Mr Norman Coyle	GlaxoSmithKline
Other Isabella Cruz	Instituto Tecnológico de CD. Madero
Dr David Cunliffe	Home
Mr Fabiano Cursi	University of São Paulo
Dr Gautam Dalwadi	GlaxoSmithKline
Dr Sofya Danilova	Coventry University
Mr David Dávila Castro	Dacoat-Chemicals

RSC INTEREST GROUP
 FORMULATION SCIENCE
 & TECHNOLOGY

Name	Affiliation
Dr Alexander de Bruin	Johnson Matthey
	Instituto Tecnológico de Cd Madero/Tecnológico Nacional
Professor Dr Adriana Isabel de la Torre	de Mexico
Mr Juan Del Rosario	BYK México
Ms Lucie Delforce	Université de Lille
Miss Shreyasi Deshpande	Unilever
Mr Alastair Dodds	Lubrizol
Dr Ben Douglas	University of Leeds
Dr Jo Douglas-Harris	Venator
Dr Marijana Dragosavac	Loughborough University
Mr Harry Drysdale	Northumbria University
	Department of Chemistry and Bavarian Polymer Institute,
IVIR VOIDAYMYR DUAKO	University of Bayreuth
Dr Raif Duempelmann	Inolytix Ltd
Mr Losiah Eksennen	
Mr Isalah Ekeanyanwu	OSCAR PAINTS LLC
Mir Toni El Geltani Nenme	Polytechnique Montreal
MISS Sarah EL MASRI	
Mr Abdelranman El-Diasty	Prime Rock Energy Capital
IVIS Mayada Elgonary	Alexandria University
	Akzonodel Decorative Paints
Dr Anabelle Elton-Legrix	imerys Talaise llaiseasite of Coloures
IVITS Ayen Emrani	lenran University of Science
Mr Laurent Espitaller	Harkness screens
Dr Chris Evans	Evaniville Consulting / Peratech Holdco Ltd
IVIT Paul Evans	Lonza
Nr Muhammad Faiaal	Petroleum university of technology
Ivir Munammad Faisai	
Professor Driveronique Faik	
IVITS Aline Farias	
Dr Kau Elerence	DP Cilthuctor
Dr Claudia Fasta	
Dr Carlos Fonte	Ine University of Manchester
Dr Debin Fracer	Johnson Matthey
Di Robin Frasel Ms Kalvn Frasschla	
Dr Jaaki Carcia	Cidetas
Dr Illaki Garcia Mrs Lisa Garrott	Catalant Bharma Solutions
Dr Cilda Casparini	
Di Gilda Gasparini Miss Roonam Ghodko	Otto von Guariska univarsity Magdaburg
Dr Simon Cibbon	
Dr Sinion Gibbon	Colloid Matrix CmbH
Mr Isaac Gilbort	
Dr Philip Gill	Analytik Llu Cranfield University
Dr Valentina Goftman	Artaco
Mr Philippe Coutyers	
28 Diasca vicit the DCC	FST website at: http://formulation.org.uk/
	a share website at <u>inter//ionnulation.org.uk/</u>

Please visit the RSC-PC website at: http://my.rsc.org/groups/home/118 Please contact the RSC-FST: secetary@formulation.org.uk

Name	Affiliation
Dr Nayna Govind	Verona Pharma
Dr Boyd Grover	Robinson Brothers
Miss Clara Esther Guerrero Corona	ITCM
Dr Carmen Guguta	Technobis Crystallization Systems
Mrs Canan Guler	Tema Machinery
Mrs Janelle Gunning	FMC Corp
Ms Ashi Gupta	Sanofi
Mr Pranshu Gupta	RITU DYE CHEM
Dr Emily Haas	Promethean Particles
Dr Eftychios Hadjittofis	UCB Pharma
Mr Muhammad Haseeb	Akhtar Saeed college of Pharmaceutical sciences
Miss Mahsa Hassanpour	Amirkabir university of technology
Mr Kevin Haven	BAE SYSTEMS Land UK
Mr Gary Hayes	Colorcon
Mrs Nasim Heydari	Laval
Dr Alain Hill	RHEOMODAL
Ms Beth Hinchliffe	National Physical Laboratory
Dr Julien Hitce	L'Oréal R&I
Professor Dr Mark Hlawitschka	JKU Linz
Mrs Lynette Holland	LAMH Consulting Ltd
Dr John Hone	Syngenta
Mr Hamed Hoorijani	University of Tehran
Ms Jyo Lyn Hor	Dow
Mrs Siv Howard	Sinomine Specialty Fluids
Dr Andrew Howe	AqDot Ltd / Cambridge U
Dr Ke Huang	Syngenta
Dr Lisa Humphreys	Cranfield University
Mr Sajid Hussain	Reda industrial materials LLC
Dr Mariam Hussain	Reckitt Benckiser
Dr Margaret Hwang	Dow
Mr Haroon Ihsan	Independent
Dr Gordon Irvine	Formulaction
Mrs Stella Itzhakov	Landa digital printing
Dr Aiman Jamsari	Massey University
Mrs Małgorzata Janik-Hazuka	Jagiellonian University Faculty of Chemistry
Dr Joergen Jansson	LEO Pharma A/S
Dr Charles Jeffrey	Consultant
Mr Colin Jenkins	Adaptive Instruments Ltd
Ms Asa Jerlhagen	University of Stockholm
Dr Spardha Jhamb	DTU
Dr Iain Johnson	VENATOR
	Sunandan Divatia School of Science, SVKM's NMIMS
Miss Ruchita Joshi	(Deemed-to-be University)
Dr Vijaya Joshi	GlaxoSmithKline
Mr Kalen Josifovski	PRA world ltd

RSC INTEREST GROUP
 FORMULATION SCIENCE
 & TECHNOLOGY

Name	Affiliation
Dr Kerstin Jurkschat	OMCS, Department of Materials, Oxford University
Dr Martti Kaasalainen	Nanoform Finland Oy
Miss Evie Kadansky	Cranfield University
Dr Nani Kadrichu	Inspired - Pulmonary Solutions
Mr James Kane	RB
Dr Rathy Kantharoopan	GSK
Miss Aikaterini Kapolou	University of the Aegean
Mrs Anastasia Karela	University of Cambridge, BP Institute
Mr Ravikant Kaspate	National institute of technology Srinagar
Dr Michael Kaszuba	Malvern Panalytical
Mrs Pernille Kemp	LEO Pharma
Ms Kianaz KeshavarzRad	Isfahan university of medical science
Mr Mahesh Khade	Glenmark Pharmaceutical
Miss Rahaf Khalaf	LEO Pharma
Ms Zahra Khani	Polytechnique de Montreal/
Mrs Kirandeep Khosa	University of Wollongong
Dr Suhasini Kishore	E Ink Corporation
Mrs Pamela Knoll	Florida State University
Miss Anna Krzyzanowska	Danish Technological Institute
Mr Mangesh Kulkarni	Sun pharmaceutical industries limited
Mr Akshay Kumar	Consultant
Miss Jess Lenderyou	Aqdot
Mrs Angela León	DSM
Miss Vivien Lin	Seda
Dr Sophie Lingier	Agfa-Gevaert nv.
Dr Bing Liu	Bureau of Engraving & Printing
Mr David Long	BASF
Dr Andrew Longstaff	Peratech Holdco Ltd
Mr Onno Looijmans	Private
Ms Andreia Lopes	Hovione
Mr Daniel Lopez	Unilever
Dr Ann-Helen Lu	OxSonics Limited
Mr Achuthamangalam Madhankumar	Eurofins PSS (Client: J&J Spring House)
Other José Gerardo Magaña	TERMOLITA SAPI DE CV
Dr Frederico Maia	Smallmatek, Lda
Dr Gregory Manley	Unchained Labs
Dr Charles Manzi-Nshuti	FMC Corporation
Dr Arianna Martelletti	Bayer
Mr Antonio Martins	FEUP
Dr Prakash Mathur	Aditya Birla
Mr Daniel McAuley	BAE Systems
Dr Karl McCarthy	Biocel Ltd.
Mr William McDonnell	Johnson Matthey
Dr Bridgette McGeever	Target Healthcare
Miss Tecashanell McIntosh	MedPharm Ltd

RSC INTEREST GROUP FORMULATION SCIENCE & TECHNOLOGY

Name	Affiliation
Dr Daragh Mcloughlin	срі
Dr Lilian McNab	Fujifilm Imaging Colorants
Mr Brian Miller	Meritics Ltd
Dr Caterina Minelli	National Physical Laboratory
Mrs Sandra Miočić	TEVA Pharmaceuticals
Mr Deepak Mishra	Niper
Mr Khonzanani Mlambo	Rosemont Pharmaceuticals
Mrs Elsa Moguel	Pinturas y Texturizados S.A. de C.V.
Mr Hossein Mohammadghasemi	Process Engineer
Dr Mansur Mohammadi	Biruni Associates (ex Unilever R&D)
Dr Koushik Mukherjee	FareLabs
Dr James Mulligan	Self
Mr Taj Mustafa	Rosemont Pharma
Professor Dr Véronique Nardello-Rataj	University of Lille
Dr Jeremie Nestor	Eurofins
Dr Monique Nguyen	Department of Treasury
Mr Tien Nguyen	University of Leeds
Dr Chris Nicholas	Smart Chemistry Ltd
Dr Anne Nickels	Energenics Europe Ltd
Dr Bernd Nienhaus	EKATO RMT
Dr Andy Noble-Judge	Ceramisphere
Miss Fernanda Nobre	FMC Química do Brasil
Miss Safa Novianti	Universitas Gadjah Mada
Dr Breanndan O Conchuir	IBM Research
Mr Shemaiah Olufemi Okeniyi	May & Baker Nigeria PLC
Mr Antonio Olguin	NANOMETRIX
Dr N. Gul Ozcan-Taskin	Loughborough University
Dr Paras Pageni	SNF Holding Company
Mr Patrick Palafox	Newell Brands - Home Fragrance Divison
Dr Ravichandra Palaparthi	Anagha Consultants
Mr Lee Parkinson	rs clare&co ltd
Dr Caroline Parneix	L'Oréal
Dr Eric Paterson	Battelle UK
Mr Umesh Patil	Medley Pharma ltd.
Dr Pallavi Pawar	GlaxoSmithKline
Mr Samuel Peel	International Flavors and Fragrances
Mr Sandro Peeters	Encapson B.V.
Dr Nick Penfold	Syngenta
Mr Gustavo Javier Perez Bardalez	Renewable Strategy Plus
Miss Maria Carolina Pery	UFPR
Mr Oliver Pickburn	Synthomer
Dr Claire Pizzey	Diamond Light Source Ltd
Dr Johan Pluyter	Pluyter Consulting, LLC
Dr Gavin Potter	RS Clare
Dr Andre Powell	Leo Pharma

RSC INTEREST GROUP FORMULATION SCIENCE & TECHNOLOGY

Name	Affiliation
Mr David Pros	Barcelonesa de Drogas y Productos Quimicos
Dr Mireia Puig	Vectura Group plc
Mr Justin Qiu	syngenta
Dr Ke-ming Quan	Procter & Gamble Company
Dr Smita Raghava	Merck & Co., Inc.
Dr Noushin Rajabalinia	UPV/EHU alumni, POLYMAT
Dr Marco Ramaioli	INRAE
Dr Heidy Ramirez	Arkema France
Mr Dilon Rathnasamy	Ashkan Consulting
Mr Suraj Raut	DYPIEMR
Dr Joseph Remias	Afton Chemical
Mrs Afni Restasari	LAPAN
Dr Tim Reynolds	Johnson Matthey
Miss Zorica Ristic	DCS Computing / TU Graz
Mr Juan Rodriguez	All Colour Supplies
Dr Astrid Roosjen	Chemical product developer
Miss Ella Rose	Upperton pharma solutions
Mrs Tina Rowney	Malvern Panalytical
Mr Subhradip Roychowdhury	Novartis Healthcare Private Limited
Sir Irvin ruiz aguilar	Agricultura Nacional
Dr Helen Ryder	The University of Manchester
Dr Matt Rymaruk	Syngenta
Mr Saravanan S	Medreich
Dr Nooshin Saadatkhah	Dép. Génie Chimique École Polytechnique de Montréal
Mr Jakub Sacharczuk	Aston University
Mr Muamet Sadiku	Joysonquin Automotive Systems GmbH
Dr Kshetramohan Sahoo	llSc
Miss Intisar Salah	University College London
Ms Laily Salsabila	Universitas Gadjah Mada
Mr Keith Sanderson	Mageleka Inc
Mrs Filipa Santos	Faculty of Sciences of University of Porto
Dr Silvia Santos	L'Oréal
Dr Claudio Santos-Nunez	Mexican Petroleum Institute
Dr Muhammad Sarfraz	The University of Lahore
Miss Murielle Sayada	Stratasys
Dr Ossama Sayed	Faculty of Pharmacy, Beni Suef University
Dr Dave Scapens	Luxfer MEL Technologies
Dr Alexander Schulz	Evonik Operations GmbH
Dr Campbell Scott	Jurox
Dr Lisa Scullion	University of Manchester
Mr Sathish Segar	koel
Professor Dr Doris Segets	University of Duisburg-Essen
Mrs Diana Selenz	Biomin Holding
Miss Maria Sereli	University of York
Mrs Nektaria Servi	Surface Measurement Systems Ltd

42

RSC INTEREST GROUP FORMULATION SCIENCE & TECHNOLOGY

Name	Affiliation
Dr Kirill Shafran	BYK Additives Ltd.
Dr Purnendu Sharma	Tergus Pharma
Mr Mykhailo Shekera	Novations LLC
Dr Frank Siegel	Saechsisches Textilforschungsinstitut e.V.
Dr Elena Simone	University of Leeds
Dr Dharmendra Singh	ULCO
Mr Albert Siuta	FMC
Mr Tom Smithson	Johnson Matthey
Miss Carissa Smoot	GSK
Dr Hamdi Sondes	université de Carthage
Dr Carissa Soto	Bureau of Engarving and Printing
Mr Ubiratan Sousa	FMC
Dr Peter Spargo	Verona Pharma plc
Dr Mariana Spulber	FMC
Mr Danny Stam	Technobis Crystallization Systems B.V.
Mr Ambert Stephane	L'Oreal
Dr Robin Sweeney	Unchained Labs
Dr Ali Tarokh	Lakehead University
Miss Hanieh Tavakoli	isfahan university of technology
Dr Sukanya Thepwatee	KMUTNB
Mrs Sarah Thompson	Tedchnobis Crystallization Systems
Dr Vasiliki Tsikourkitoudi	Karolinska Institutet
Dr Richard Tweedie	Particulate Sensors Ltd
Dr Stephane Ugazio	DOW
Mr Huzefa Ujjainwala	GCP
Mr Abdullah Ujjainwala	GCP
Miss Marion van Dalen	Johnson Matthey
Mr Frando van der Pas	InProcess-LSP
Mr Marc Bryan Vargas	Vargas Engineering Services
Mr José Vieira	MQB CHEMICAL
Ms Maria Vieytez	ENSCL
Mr James Vincent	University of Birmingham
Dr Jishun Wang	Devro PLC
Dr Steve Ward-Smith	Malvern Panalytical
Dr Barnaby Warne	Syngenta
Mr Alex Warren	ColorMatrix
Miss Caroline Welch	RSSL
Mr Ferdinandus Wempi	PT Brite Polymer
Mr Daniel Weston	Johnson Matthey
Mr Gary Wight	Emtelle
Dr Neal Williams	AkzoNobel
Mr William Wiseman	Luxfer MEL Technologies
Ms Linda Wolfe	International Products Corporation
Miss Natalie Gee Kwan Wong	University of York
Mr Matthew Wood	Chemring Countermeasures

RSC INTEREST GROUP FORMULATION SCIENCE & TECHNOLOGY

Name	Affiliation
Professor Charley Wu	University of Surrey
Mr Yingqian Xu	Energenics Europe Ltd
Dr Laibin Yan	FMC Corporation
Dr Mingzhe Yu	The University of Sheffield
Mr Herrick Yu	MacDermid Enthone Industrial Solution
Dr Cigdem Yucel Falco	University of Copenhagen
Mr Martin Zaki	CPL Aromas Ltd.
Dr Andre Zamith Cardoso	Cardoso & Wied Engineering
Dr yixing (Philip) Zhao	Quaker Houghton Company
Mr Qing Zhou	Syngenta
Dr Xiaomin Zhou	University of Copenhagen

I

Upcoming Events for 2021 and beyond:

In line with guidance from the Royal Society of Chemistry we have postponed all face-to-face events. Looking forward to the future we plan to offer both face-to-face and online events.

2021 Events:

RSC-FST 2 March 2021 – Keeping it Green in Personal Care

RSC- FST 12 March 2021 - Formative Formulation 2 - Early career event

RSC-PC 25 March 2021 – The Forge – Characterisation of Pharmaceutical Formulations

RSC-FST 5-9 September 2021 – Advances in Corrosion Protection by Organic Coatings (ACPOC7)

Future events:

We would love to hear from you if you have an idea for a new RSC-FST meeting and/or if you would like to help with the organisation of an event.

Please visit our dedicated website to find out more about our upcoming events.

Relive our past events:

You can read reports from our past conferences and re-live past online events via YouTube links!

10 November 2020 – <u>Modelling and Simulation in Formulation</u> Hear about how modelling and simulation are revolutionising formulation

3 November 2020 – Formulation 4.1: Putting Digital in Formulation

Hear about how we are bringing digital to all aspect of formulation and look at how Industry 4.0 is changing the formulation industry.

