APPLICATION OF LF-NMR RELAXATION TO DETERMINE THE HANSEN SOLUBILITY PARAMETER (HSP) OF PARTICLES Ravi Sharma^b, Shin-ichi Takeda^c, David Fairhurst^a, Stuart Prescott^e, Terence Cosgrove^d

^a Colloid Consultants, Ltd., Aiken, SC 29803, USA
 ^b Mageleka Inc., Winter Park, FL 39104, USA
 ^c Takeda Colloid Techno-Consulting Co., Ltd., Osaka 564-0051, Japan
 ^d School of Chemistry, Cantock's Close, Bristol BS8 1TS, United Kingdom
 ^e School of Chemical Engineering, UNSW, Sydney, Australia

INTRODUCTION

- Achieving particle-solvent compatibility is a key step in the preparation of many products e.g., inks, paints, cosmetics
- Currently sedimentation times are used to rank order solvent compatibility and when used with the Hansen Solubility Parameter (HSP) approach, solvents can be rationally selected based on the HSP value of the particle
- Molecular-level interactions determine solvent suitability but are difficult to measure; existing experimental approaches (mainly sedimentation) require slow/expensive tests of dispersion stability
 - Time consuming, subject to error, often requires extra step of diluting, can be complicated and need to account for viscosity and density
- Solvent relaxation NMR measurements are shown to be a fast indicator of solvent suitability, with sensitivity to the solvent-particle
 intermolecular forces making it a reliable proxy for stability measurements.
 - Time saving, easy to do, no dilution required
 - Practical and economic benefit
- The application of the approach is illustrated using a range of surface modified zinc oxide and aluminum oxide particles, with

North

similarities and differences between the particle surfaces becoming evident through the analysis.

¹H NMR RELAXATION

Solvent relaxation NMR can discriminate between highly mobile (liquid-like) and immobile (solid-like) protons on the basis of magnetic relaxation rates. A high R_{no} indicates good solvent-particle compatibility, Can rank-order solvent affinity for particle surface

PARTICLES

Characteristics of the aluminum oxides.

Coating	Surface	Aqueous behavior	ζ potential/mV	Mean particle size/nm
None	Hydrophilic	Cationic	+45	ca 300
Silane	Hydrophobic	Non-wettable	N/A	ca 300

RESULTS - NMR RELAXATION

Comparison of the Relaxation Numbers (R_{no}) for zinc oxide powders in a variety of solvents, showing the different solvent affinity between (a) silica-coated and (b) silane-coated powders.

RF Coil

Sample

Observe a single relaxation that is a weighted average

 $R_{av} = R_f (1 - \Phi) + R_b \Phi$ Φ : proportion of bound liquid

R_b : relaxation rate of bound liquid R_f : relaxation rate of free liquid

 $R_{\rm no} = \left[R_{\rm susp} / R_{\rm solv} \right] - 1$

Characteristics of the zinc oxides.

Coating	Surface	Aqueous behavior	ζ potential/mV	Zavg particle size/nm
None	Hydrophilic	Cationic	+39	122
SiO ₂	Hydrophilic	Anionic	-55	159
Silane	Hydrophobic	Non-wettable	N/A	138

RED > 1

Dispersions of silica-coated zinc oxide in toluene, methanol (a) immediately after preparation, (b) four hours later. The separation and flocculation of the dispersion in toluene can be seen in the photographs and is predicted by the very low Relaxation Number.

RESULTS - HSP ANALYSIS USING ¹H NMR SOLVENT RELAXATION DATA

The Relaxation Numbers were used to derive a boundary between good and poor solvents within HSP space. The HSP for this silica-coated zinc oxide material were obtained from the sphere: Dispersion, $\delta D = 16.58 \text{ MPa}^{1/2}$, Polar, $\delta P = 14.82 \text{ MPa}^{1/2}$ and Hydrogen Bonding, $\delta H = 22.11 \text{ MPa}^{1/2}$

Table 4

HSP parameters derived for the zinc oxides and aluminum oxide powders^a.

Coating	Surface	$\delta_D MPa^{1/2}$	$\delta_PMPa^{1/2}$	$\delta_{\rm H}~{\rm MPa}^{1/2}$
None	Hydrophilic	15.95 (35%)	12.18 (27%)	17.64 (39%)
SiO ₂	Hydrophilic	16.58 (31%)	14.82 (27%)	22.11 (42%)
Silane	Hydrophobic	18.51 (45%)	8.97 (22%)	14.05 (34%)
None	Hydrophilic	18.03 (36%)	12.52 (25%)	19.50 (39%)
Silane	Hydrophobic	17.97 (58%)	6.40 (21%)	6.59 (21%)
	Coating None SiO ₂ Silane None Silane	CoatingSurfaceNoneHydrophilicSiO2HydrophilicSilaneHydrophobicNoneHydrophilicSilaneHydrophilic	Coating Surface δ _D MPa ^{1/2} None Hydrophilic 15.95 (35%) SiO ₂ Hydrophilic 16.58 (31%) Silane Hydrophobic 18.51 (45%) None Hydrophilic 18.03 (36%) Silane Hydrophobic 17.97 (58%)	$\begin{array}{llllllllllllllllllllllllllllllllllll$

^a Values in parentheses are the percentages of each interaction energy shown in Fig. 4.

CONCLUSION

The initial Relaxation Number is a good index of the propensity of a suspension to settle and so can provide the formulator with useful information.

- Gives the formulator the option of using the information in short time well before there are any visible signs of change in concentrated suspensions.
- NMR solvent Relaxation Numbers can be used to rank order solvent suitability and to determine the HSP value for the test particle. Provides a rational approach for selecting most suitable solvents/solvent mixtures to disperse the particle.

Polar energy %

Teas plots for all five oxide powders based on the HSP results. The progression from the most polar particles (silica-coated ZnO) to the most hydrophobic particles (silane-coated aluminum oxide) is clearly demonstrated

Fairhurst *et al.,* Powder Technology **377** (2021) 545–552

Acknowledgement: Help and guidance by Prof. Steven Abbott regarding use of HSPiP software is acknowledged and appreciated