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Virtual Formulation Laboratory for prediction and optimisation of
manufacturability of advanced solids based formulations
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VFL work programmes

* Predicting bulk properties from particle properties
* Predicting particle properties from molecular structure

* Characterisation of adhesive interactions and surface
energy of functionalised particles

* VFL toolkit development
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VFL approach to powder surface energy (l)

Vikram Karde and Jerry Heng
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Surface Energy Characterisation using Inverse Gas Chromatography (FD-
IGC)

., . Anisotropy in crystalline solids
Surface energy determination using IGC (Heterogeneous surfaces)
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Surface energy heterogeneity using Finite Dilution IGC (FD-IGC)
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Surface energy (mJ/m?)

Facet specific surface energy using
Contact angle

Surface Coverage (%)
Surface energy heterogeneity profile
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Processing and Surface Energy

Milling * Size separation
* Size reduction

» Creation of new surfazes

. 2\
Processing
Sieving induced
Q transformation :>
Coating/Funtionalisation Anisotropic * Defects
crystalline solid v * Surface

amorphisation

* Functionalised
surfaces

* Milling induced surface damage led to high
heterogeneity surface

* Functionalisation creates energetically
homogeneous surfaces
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Interparticle Structuring and Surface Energetics of
. R urrace energy aistripution
Binary Mixtures

Structuring of component particles influence the surface
energy of binary mixture

Karde et al.,(2020) Influence of interparticle structuring on the surface energetics of a binary powder
system. Int. J. Pharm. 581, 119295 |
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VFL approach to surface energy (ll)

Nicodemo Di Pasquale and Ruslan Davidchack
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Shuttleworth Equation (1950)

Surface Stress tensor fgs, Surface Free Energy -y, strain tensor wu;;

o

SE __ N Y rSS S

27 :757/9_|_ 671/7,3 _fz'j > 1, — X, Y
8?23_ can be positive or negative

‘fy always positive
@) /i; can be positive or negative

Verification for LJ crystal at finite temperature with cleaving

1"=0.3 Y 8(?,11/1 fz%’S fz‘gE
U 2.063(2) | —2.87(6) | —0.783(8) | —0.81(6)
Uy 2.063(2) | —1.38(6) | 0.69(2) 0.68(6)

(Reduced LJ units, fcc(110))
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LJ system: fcc(110)

2.080

2.072

7

2.064

2.056

—0.0050

2.048

0.0000
strain

—0.0025 0.0025 0.0050

2.466

2.460

0.000 0.004

strain

0.002

Results in reduced LJ units

Nicodemo Di Pasquale

2.070
2.065

& 2.060

024
X 0.6
= 0.08
0.00
0.0
—0.1
—0.2

7T22<Z>

0.05
0.00
—0.05

7T33<Z>

0.0025

0.0050

—— Uy
—0.0050 ~0.0025 0.0000
strain
0 10 20
z

VEL



Surface Free Energy organic crystals: Mannitol

The cleaving methodology is applied to molecular crystals

Different orientations considered:

(001), (010), (100), (011),(120)
‘Different Experimental lattice

parameters (a, b, c¢) considered:

DLMANT, DMANTLO9

Q@ CROMOS Force-field (FF)

@ United-atoms
@ All-atoms

Qualitative agreement with experiments (most stable orientation)
but SFE shows significative differences for different FFs and
crystal structures considered
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Cleaving: Mannitol (surface perpendicular to b axis)
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Lennard-Jones

Coulomb

Model Structure orientation Total
Component Component
ATB dm (100) 178 o2 126
ATB dm (010) 141 79 62
ATB dm (001) 264 2 262
GROMOS dm (100) S0 60 20
GROMOS dm (010) 70 54 16
GROMOS dm (001) 92 69 23
ATB dmO09 (001) 179 41 139
ATB dmQO9 (100) 161 35 126
ATB dmO09 (010) 155 o0 105
ATB dmO09 (120) 139 36 104
ATB dmO9 (011) 139 36 104
GROMOS dmO09 (001) 92 70 22
GROMOS dmOQO9 (100) 92 70 21
GROMOS dmO09 (010) 75 57 18
GROMOS dmO09 (120) 69 o2 17
GROMOS dmOQ09 (011) 70 o3 17

Results in mJ/m?, dm=DLMANT, dm09=DMANTLO09, error =~ 1
mJ/m? in all cases
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VFL approach to compaction

Ben Edmans and Csaba Sinka
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UNIVERSITY OF

HHICESTER  Contact laws for compressible particles

Contact laws can link particle to bulk behaviour but
remain under-developed for compressible particles

Generic compressible plasticity model proposed

FE simulations used to investigate influence (right) of
material parameters on linear-exponential contact
law

Particle internal zone development mapped (below)

Edmans B.D. and Sinka I.C. 2019. Numerical derivation of a normal contact law for compressible plastic
particles. Mechanics of Materials. https://doi.org/10.1016/;.mechmat.2019.103297
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Particle unloading response

* Accurately representing unloading response is important for
DEM at high deformations.

» Stiffness (p) and nonlinearity (a) of unloading load-
displacement curves at large displacements investigated

* 560 FE simulations (binary contacts, elastic perfectly-plastic
material model) established dependence of a and p on
displacement and material parameters

Edmans B.D. and Sinka I.C. Unloading of elastoplastic spheres
from large deformations. Powder Technology. Accepted for
publication
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LEICESTER Compact strength prediction

* Goal: predicting strength of compacts from particle/surface
properties

* Three main components
* Fragmentation Population Balance Model
* FE deformation database for interpolation
* Adhesion model

» Effective adhesion force function found by calibration
* Key features
* Modular

* Represents key compaction mechanisms
 Component models well supported
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VFL approach to powder flow

Hamid Salehi, Mike Bradley and Vivek Garg
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wensvien 1, Flow in Quasi-static Conditions

for Bulk Solids Handling Technology

* A new technique developed/modified to determine the inter-particle
forces of the cohesive powders using a few particles.

* From a few grams at an early stage of formulation, a user can predict
whether a bulk of this material will be easy or hard to process.

* An empirical model developed for predicting the flow function from
Bond Number/ Adhesion forces.
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The Wolfson Centre
for Bulk Solids Handling Technology

Aim: measuring cake strengths driven by plastic flow
mechanisms in storage.

This outperformed the conventional uniaxial unconfined failure
caking tester due to the defined location of the failure plane to
maximise repeatability, the necessity for a lower quantity of
powder, maximised exposed surface and lower wall friction as
well as production costs.

A statistical model has been successfully developed to study
the effect of each variable on the cake strength.

Salehi et al. Development and application of a novel cake
strength tester, Doi: 10.1016/j.powtec.2019.03.024
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2. Plastic Flow Caking
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%/ GREENWICH 3. SegregatiOn

The Wolfson Centre
for Bulk Solids Handling Technology

Predicting materials propensity to free
surface segregation when discharged to
form a heap.

Perfectly fitted circle

(a) 10 um (b) 80 pm

* Measure degree of segregation (from
top to bottom of slope) by using a scale
from perfectly blended (20) to . 551
segregated sample (100) based bulk
cohesion and particle sphericity.
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VFL approach to powder flow

Mehrdad Pasha, Xiaodong Jia and Mojtaba Ghadiri
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Our Approach
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Powder Mixture Bond Number
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Powder Mixture Bond Number

Pasha, M., Hekiem, N.L., Jia, X. and Ghadiri, M., 2020. Prediction of flowability of cohesive powder mixtures at high strain rate conditions by discrete element method. Powder Technology.
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Rheology of Powder Mixtures
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Rheology of Powder Mixtures
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Rheology of Powder Mixtures
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Concluding remarks

* VFL - a software tool for prediction and optimisation or
manufacturability and stability of advanced solids-based
formulations

* develops the science base for understanding of surfaces,
particulate structures and bulk behaviour to address physical,
chemical and mechanical stability during processing and
storage

* develops formulation science to link molecule to
manufacturability (through experimental characterisation
and numerical modelling)

* establishes methodologies to formulate new materials
through developing functional relationships considering the
limits and uncertainties of these relationships
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