Virtual Formulation Laboratory for prediction and optimisation of manufacturability of advanced solids based formulations

Investigators: I.C. Sinka (PI), J.Y.Y. Heng, M. Ghadiri, M.S.A. Bradley, R.L. Davidchack, X. Jia, R. Berry (RIP), J. Cummins PDRAs: B.D. Edmans, N. Di Pasquale, M. Pasha, H. Salehi, V. Karde, V. Garg (PhD student)

> Future formulation 4 University of Edinburgh (online meeting) 23 June 2020

Virtual Formulation Lab Team

Academic partners	PDRAs and visitors	Industrial partners
Prof. Csaba Sinka (PI) – Leicester Prof. Ruslan Davidchack	Dr. Ben Edmans Dr. Nicodemo Di Pasquale	CPI, NFC P&G GlaxoSmithKline AstraZeneca
Prof. Mojtaba Ghadiri – Leeds Dr. Xiaodong Jia	Dr. Mehrdad Pasha Dr. Koichiro Ogata (visiting scholar) Dr. Sadegh Nadimi (Leeds U.) Dr. Wenguang Nan (visiting scholar)	Nestle KP Snacks Brookfield Britest
Prof. Mike Bradley – Greenwich Dr. Rob Berry (RIP) John Cummins	Dr. Hamid Salehi Vivek Garg (PhD student) Dr. John Cummins (Greenwich U.)	PSE Griffiths Food Freeman Technology
Dr. Jerry Heng – Imperial College	Dr. Vikram Karde Izabela Phillips (PhD student)	Chemours EDEM

Abbvie

Virtual Formulation Laboratory for prediction and optimisation of manufacturability of advanced solids based formulations

VFL work programmes

- Predicting bulk properties from particle properties
- Predicting particle properties from molecular structure
- Characterisation of adhesive interactions and surface energy of functionalised particles
- VFL toolkit development

VFL approach to powder surface energy (I)

Vikram Karde and Jerry Heng

Imperial College London

Imperial College London

Surface Energy Characterisation using Inverse Gas Chromatography (FD-

Imperial College London

Processing and Surface Energy

VFL approach to surface energy (II)

Nicodemo Di Pasquale and Ruslan Davidchack

Shuttleworth Equation (1950)

Surface Stress tensor f_{ij}^{SS} , Surface Free Energy γ , strain tensor u_{ij}

$$f_{ij}^{SE} \equiv \gamma \delta_{ij} + \frac{\partial \gamma}{\partial u_{ij}} = f_{ij}^{SS}, \quad i, j = x, y$$

 $\bigcirc \frac{\partial \gamma}{\partial u_{ij}}$ can be positive or negative $\bigcirc \gamma$ always positive $\bigcirc f_{ij}$ can be positive or negative

Verification for LJ crystal at finite temperature with cleaving

	T = 0.3	γ	$rac{\partial \gamma}{\partial u_{ii}}$	f_{ii}^{SS}	f^{SE}_{ii}		
	u_{xx}	2.063(2)	-2.87(6)	-0.783(8)	-0.81(6)		
	u_{yy}	2.063(2)	-1.38(6)	0.69(2)	0.68(6)		
Reduced LJ units, fcc(110))							
				< □ > <	₽▶∢≣▶∢≣▶	æ	୬୧୯

LJ system: fcc(110)

VFL

Surface Free Energy organic crystals: Mannitol

The cleaving methodology is applied to molecular crystals

 Different orientations considered: (001), (010), (100), (011),(120)
 Different Experimental lattice parameters (a, b, c) considered: DLMANT, DMANTL09
 GROMOS Force-field (FF)
 United-atoms
 All-atoms

Qualitative agreement with experiments (most stable orientation) but SFE shows **significative differences** for different FFs and crystal structures considered

Cleaving: Mannitol (surface perpendicular to b axis)

Model	Structure	orientation	Total	Lennard-Jones Component	Coulomb Component
ATB	dm	(100)	178	52	126
ATB	dm	(010)	141	79	62
ATB	dm	(001)	264	2	262
GROMOS	dm	(100)	80	60	20
GROMOS	dm	(010)	70	54	16
GROMOS	dm	(001)	92	69	23
ATB	dm09	(001)	179	41	139
ATB	dm09	(100)	161	35	126
ATB	dm09	(010)	155	50	105
ATB	dm09	(120)	139	36	104
ATB	dm09	(011)	139	36	104
GROMOS	dm09	(001)	92	70	22
GROMOS	dm09	(100)	92	70	21
GROMOS	dm09	(010)	75	57	18
GROMOS	dm09	(120)	69	52	17
GROMOS	dm09	(011)	70	53	17

Results in mJ/m², dm=DLMANT, dm09=DMANTL09, error ≈ 1 mJ/m² in all cases

Nicodemo Di Pasquale V

990

VFL approach to compaction

Ben Edmans and Csaba Sinka

Contact laws for compressible particles

- Contact laws can link particle to bulk behaviour but remain under-developed for compressible particles
- Generic compressible plasticity model proposed
- FE simulations used to investigate influence (right) of material parameters on linear-exponential contact law
- Particle internal zone development mapped (below)

UNIVERSITY OF

LEICESTER

Edmans B.D. and Sinka I.C. 2019. Numerical derivation of a normal contact law for compressible plastic particles. *Mechanics of Materials*. <u>https://doi.org/10.1016/j.mechmat.2019.103297</u>

Particle unloading response

Fmaz

10

10

0.01

Secant stiffness, p

Dimensionless load

- Accurately representing unloading response is important for DEM at high deformations.
- Stiffness (ρ) and nonlinearity (α) of unloading loaddisplacement curves at large displacements investigated
- 560 FE simulations (binary contacts, elastic perfectly-plastic material model) established dependence of α and ρ on displacement and material parameters

$$ho(ar{E},\
u,\ ar{\delta}_{max})pproxrac{1}{ar{\delta}_{max}}+\phiar{E}\left(\gamma_1ar{\delta}_{max}+\gamma_2ar{\delta}_{max}^{-\gamma_3}+\gamma_4
u
ight)$$

Edmans B.D. and Sinka I.C. Unloading of elastoplastic spheres from large deformations. *Powder Technology*. Accepted for publication

8 mar

Dimensionless displacement

+E/c

elastic respon

 $1 \leq E/\sigma_v \leq 1000$

Compact strength prediction

- Goal: predicting strength of compacts from particle/surface properties
- Three main components
 - Fragmentation Population Balance Model
 - FE deformation database for interpolation
 - Adhesion model
- Effective adhesion force function found by calibration
- Key features
 - Modular
 - Represents key compaction mechanisms
 - Component models well supported

VFL approach to powder flow

Hamid Salehi, Mike Bradley and Vivek Garg

1. Flow in Quasi-static Conditions

- A new technique developed/modified to determine the <u>inter-particle</u> <u>forces</u> of the cohesive powders using a few particles.
- From a few grams at an early stage of formulation, a user can predict whether a bulk of this material will be easy or hard to process.
- An empirical model developed for predicting the flow function from Bond Number/ Adhesion forces.

= Lactose-70-70 100 Lactose-140-70 - Eskal 15 90 Lactone-200-70 -Eskal 10 Lactone-230-70 47 80 -- Eskal 4 Manitol- Lactose-70 -- Eskal 2 Corn Starch-Lactose 70 Force of adhesion, F 70 Plain Flour- Lactose:70 -Lactose-230 % 40 Stainless steel Detached (% and the second Lactose-140 TIVAR-98 --- Lactone-70 Glass - Lactose-200 Mild stee ---- Manitol Mass 30 --- Plain Flour Bond number Icing Sugar 20 Bo = Fa/mg --- Corn Starch 10 10 cormulation Ŭ. 0 10 20 30 0 40 50 Deceleration (m/s² Deceleration (m/s² **Imperial College** * * UNIVERSITY OF CONTINUES UNIVERSITY of GREENWICH EICESTER London UNIVERSITY OF LEEDS

<u>2. Plastic Flow Caking</u>

Aim: measuring cake strengths driven by plastic flow mechanisms in storage.

This outperformed the conventional uniaxial unconfined failure caking tester due to the defined location of the failure plane to maximise repeatability, the necessity for a lower quantity of powder, maximised exposed surface and lower wall friction as well as production costs.

A statistical model has been successfully developed to study the effect of each variable on the cake strength.

Salehi et al. Development and application of a novel cake strength tester, Doi: 10.1016/j.powtec.2019.03.024

Imperial College

London

3. Segregation

Predicting materials propensity to free surface segregation when discharged to form a heap.

 Measure degree of segregation (from top to bottom of slope) by using a scale from perfectly blended (20) to segregated sample (100) based bulk cohesion and particle sphericity.

Imperial College

London

VFL approach to powder flow

Mehrdad Pasha, Xiaodong Jia and Mojtaba Ghadiri

Our Approach

Objectives:

- Looking at flowability of powder mixtures at high-strain rate.
- Establish a methodology for calculating properties of powder mixtures using components single particle properties
- □ Prediction of rheology of formulated powder mixtures using their flow properties

Powder Mixture Bond Number

Bond Number is the ratio between the force of adhesion and gravitation force:

'The larger the value of Bond Number, the more cohesive the powder is.'

Since powder mixtures consist of several components having different values of granular Bond Number, an averaged value must be calculated.

Mixture Bond Number can be calculated by averaging the bond number of individual components and introducing a weighting factor (calculated based of fractional surface area of individual components

Arithmetic Weighted Mean	Harmonic Weighted Mean	Geometric Weighted Mean	General Equations		
$Bo_{mix} = \sum_{i=1}^{n} \sum_{j=1}^{n} Bo_{ij} \times w_{ij}$	$Bo_{mix,har} = \left(\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{W_{ij}}{Bo_{ij}}\right)^{-1}$	$Bo_{mix,geo} = \prod_{i=1}^{n} \prod_{j=1}^{n} Bo_{ij}^{w_{ij}}$	$\frac{Bond Number}{Bo_{g,ij}} = \frac{F_{ad,ij}}{W_{ij}}$	$\frac{\text{Weighting Factor}}{w_{ij}} = f_{SA,i} f_{SA,j}$	$\frac{\text{Average Weight}}{W_{ij}} = \frac{2W_iW_j}{W_i + W_j}$

Note: in our study, we are considering individual interactions in the mixture. For example, a binary system has four interactions (AA,AB,BA,BB)

adh

Imperial College

Iondon

a Formulat

Powder Mixture Bond Number

A clear trend is observed when using geometric and arithmetic bond numbers.
 A good unification of the data can only be achieved with arithmetic mixture bond number
 Specific flow energy only starts rising when Bo_{mix,arth} > 10

Pasha, M., Hekiem, N.L., Jia, X. and Ghadiri, M., 2020. Prediction of flowability of cohesive powder mixtures at high strain rate conditions by discrete element method. Powder Technology.

Imperial College

Iondon

Rheology of Powder Mixtures

Rheology of Powder Mixtures

Rheology of Powder Mixtures

Concluding remarks

- VFL a software tool for prediction and optimisation of manufacturability and stability of advanced solids-based formulations
- develops the science base for understanding of surfaces, particulate structures and bulk behaviour to address physical, chemical and mechanical stability during processing and storage
- develops formulation science to link molecule to manufacturability (through experimental characterisation and numerical modelling)
- establishes methodologies to formulate new materials through developing functional relationships considering the limits and uncertainties of these relationships

Acknowledgement

EPSRC project number EP/N025261/1 "Virtual Formulation Laboratory for prediction and optimisation of manufacturability of advanced solids based formulations"

Engineering and Physical Sciences Research Council

