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fSH Introduction m

« Biological medicines account for >25% of all new drug approvals: 8 of the top 10 selling drugs

» Biopharmaceuticals market is rapidly growing with reported sales of £197 billion in 2016
(compared with total drug market of £816 billion)

» Next generation therapies are increasingly complex and engineered for biological activity at the
expense of physical and chemical stability (eg protein fusions, fragments, conjugates with small
drug molecules)

« Formulation development of biopharmaceuticals:

1. Dosage formulations fixed quickly - in time for clinical trials. Not much material is available.
Shelf life over 2 years not known until mid-way through clinical trials.

2. Formulations require stability, potency, and ease of delivery to patient

3. Many therapeutics require high concentrations which leads to increased physical degradation,
poor rheological properties, and phase separation
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24 Protein aggregation m

» Predicting and controlling aggregation is an outstanding challenge:
1. Key intermediates are transient, have low populations, and are difficult to isolate / study
2. Multiple mechanisms for aggregation, depend on protein and environment (solvent properties, temperature)

* Rapid experimental screens are too indirect:

1. Unfolding temperature or free energy, colloidal stability (eg aggregation temperatures and protein-protein
interaction measurements)

2. Accelerated (eg. high T) aggregation assumes Arhenius-type extrapolations



¢ % Aim1: Understand factors affecting aggregation in formulation ych
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MANCHESTER

Aim2: How can we predict better formulations?

Do conformational and colloidal stabilities correlate to aggregation rates?
Does forced degradation at high temperature predict shelf-life?

Can alternative methods be developed for predicting aggregation rates?

Aim3: How can we engineer based on predictions?
Can we engineer lower aggregation rates?

Can we develop novel (GRAS-based) excipients?



MANCHESTER Objectives m

0O1. Use high-throughput automation to generate a large experimental formulation dataset for
protein:excipient combinations, that will include aggregation kinetics, conformational stability,
colloidal stability, phase behaviour, and rheology measurements.

02. Molecular informatics and modelling will improve predictability of formulation attributes and
excipient effects

03. Analytical advances will enable earlier, more sensitive, and lower-volume assessments of
formulated protein degradation kinetics.



Heat maps of Fab aggregation kinetics at 4-65 °C
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Where T, << T, fraction unfolded is <<0.0001:

Kinetics at low T,,. often dont correlate with melting temperature m

Global unfolding (and hence T,,) is not relevant 15 -
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Small-angle x-ray scattering of Fab under native conditions m

pH-dependent conformation Aggregation kinetics correlate
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Molecular dynamics simulation for Fab
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Equilibrium RMSF (300K) pH 7 pH 3.5

- pH7, 25°C, 50ns, 50mM IS o
- pH3.5, 25°C, 50ns, 50 mM IS CL domain displacement

- OPLS-AA/L force field & SPC/E water
*Triplicated Codina at al. 2019 JMB
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@'ﬁ Which molecular dynamics simulation structures explain SAXS? Uk
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{;—3 Best-fit SAXS structures reveal APR exposure at low pH ych
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Protein engineering and formulation
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"@E MD-guided protein engineering to slow aggregation

N
T., did not increase, but AS,;, increased.
C pH70 Aggregation slowed where AS,;, increased.

Cy

Designed 12 stabilising and 5 destabilising HC-134 to 136 / =
mutations using ROSETTA at flexible sites. —

Zhang et al. (2018) Computational-design to reduce conformational flexibility and aggregation rates of an antibody Fab fragment. Molecufar Pharmaceutics. 15, 3079-3082



light scattering intensity

Dipeptides as novel excipients

*At isoelectric pH, diArg is most
effective at reducing insulin self
association versus all other additives
reflecting ability to neutralize
electrostatic attraction.

At pH 3.7, diArg, ArgPhe and

mixtures of Arg and Glu equall
effective at neutralizing hydrop,
interactions between insulin mc

pH 3.7
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s STPP for tuning protein phase behaviour I
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soluble protein protein precipitate protein re-solubilized

Lysozyme, pH 8

Reentrant condensation phenomena observed with positively charged proteins and STPP (or ATP)

Initial [STPP] causes protein precipitation through forming ion bridges across proteins
Resolubilization at higher [STPP] due to overcharging protein

STPP can direct formation of reversible colloidal gels with glassy dynamics for formulating proteins
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ATP and TPP prevent thermal-induced aggregation
of negatively charged proteins.

Stabilization is due to reduction in aggregate growth
rates through electrostatic stabilization
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ATP and STPP prevent
protein aggregate growth

Multivalent anions ATP and TPP supercharge
negatively charged proteins through ion binding

« Supercharging protein with ATP or TPP increases
protein-protein repulsion and colloidal stability as
reflected by increase in B,, values at fixed IS
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Polyvalent anion binding and solubility

Controlling Phase Separation of Lysozyme with Polyvalent Anions
Jordan W. Bye™ and Robin A. Curtis*
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Bye and Curtis (2019) J Phys Chem B 123:593; Kalayan et al (2020) Mol Pharm 17:595.
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‘L-.rl';f.sﬁ Protein-Sol

Sequence Patches Heatmap Abpred pka Software

Sequence Prediction

The protein-sol software will take a single amino acid sequence and return the result of a set of solubility
prediction calculations, compared to a solubility database.

Flease enter a single sequence of single letter amino acid codes in the FASTA format.

For example

> PO0DS47
MVEVTAFASSANMSVGFDVLGAAVTPVDGALLGDVVTVEAAETFSLNNLGRFADKLPSEPRENIVYQCWERFCOELGKQ1
FVAMTLEEKNMP IGSGLGSSACSVVARLMAMNEHCGEPLNDTRLLALMGELEGRISGSIHY DNVAPCEFLGGMQLMIEENDI

TN EFNEWDT WU T AY D TV CTARARDATT. PAMYRRATYTRAHCRHT AR THACY CROPRT.AAKT MENVTLAFDYRERTT D

Originally (2017): Sequence-based solublity prediction, based E. colidata
Currently (2020), also: Patches, Heatmap, Abpred, pKa
In development (2020): Excipient predictions (for next meeting)

(2017) Bioinformatics (2017) 33:3098: : PNAS (2009) 106:4201
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Patches: with Fab fragment

non-polar

I 2.3

145 |

A positive

75mV ‘_ \
'

0.6 75mV
polar negative
polarity charge

Hebditch and Warwicker (2019) Sci Rep 9:1969
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D 20 25 30 35 40 45 50 55 60 65 7.0 7.5 8.0
pH
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: pH and ionic strength

Predicted pH and ionic
strength dependence of folded

state stability (upper panel),
and net charge (lower panel).

Upper panel shows ‘phase
diagram’ fit to experimental

data.

Method can be used to identify
regions that lower stability in
conditions such as a low pH of
bioprocessing.

These regions can then be
engineered out, e.g. switching
Asp/ Glu for Asn/Gin.

Hebditch and Warwicker (2019) Sci Rep 9:1969; Hebditch et al (2020) Comp Struct Biol J 18:897
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AbPred: ML models from mAb137

A machine learning model for each of the 12

.1 methods, this example is prediction of HIC ”"95”'““"23"'.:{“;% 2
(orange), against the background (green). ety

Models predict hydrophobicity (HIC etc,

=4 below) a problem for this mAb. ®

"

Predicted

-
L

mAb137 is a dataset of 12
biophysical measurements (HIC
etc) for 137 mAbs (Jain et al 2017)

11

Experimental value (min)

problem no problem (predicted)
G AL

HIC SMAC ShAL CiC l

T
12 13 14

META

HEK PSH ELISA BVP Dok A3

Hebditch and Warwicker (2019) PeerJ 7:€8199 ; Jain et al (2017) PNAS: 114:944,
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Aim1: Understand factors affecting aggregation in formulation

- local dynamics/unfolding

- exposure of aggregation hotspots (APRS)

- colloidal stability (net charge)

- Optimize formulations to increase T, decrease dynamics and increase net charge

Aim2: How can we predict better formulations?

- Local dynamics and aggregation hotspots can be predicted computationally

- Excipient interactions can be predicted by molecular docking or LCMS

- Net charge and effect of charged excipient binding can be predicted computationally
- see webserver at protein-sol.manchester.ac.uk

Aim3: How can we engineer based on predictions?

- Mutations that suppress dynamics sometimes decrease aggregation kinetics
- Novel (GRAS-based) excipients based on dipeptides, and supercharging with STPP

F W s
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