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MANCHF$TER 
1824 Introduction 

~~ • Biological medicines account for >25o/o of all new drug approvals: 8 of the top 10 selling drugs 
.c. 

0 

• Biopharmaceuticals market is rapidly growing with reported sales of £197 billion in 2016 
(compared with total drug market of £816 billion) 

• Next generation therapies are increasingly complex and engineered for biological activity at the 
expense of physical and chemical stability (eg protein fusions, fragments, conjugates with small 
drug molecules) 

• Formulation development of biopharmaceuticals: 

1. Dosage formulations fixed quickly - in time for clinical trials. Not much material is available. 
Shelf life over 2 years not known until mid-way through clinical trials. 

2. Formulations require stability, potency, and ease of delivery to patient 

3. Many therapeutics require high concentrations which leads to increased physical degradation, 
poor rheological properties, and phase separation 
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• Predicting and controlling aggregation is an outstanding challenge: 
1. Key intermediates are transient, have low populations, and are difficult to isolate I study 
2. Multiple mechanisms for aggregation, depend on protein and environment (solvent properties, temperature) 

N u 
f(pH IS T) 

• Rapid experimental screens are too indirect: 
1. Unfolding temperature or free energy, colloidal stability (eg aggregation temperatures and protein-protein 

interaction measurements) 
2. Accelerated (eg. high T) aggregation assumes Arhenius-type extrapolations 



Aim1: Understand factors affecting aggregation in formulation 
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Aim2: How can we predict better formulations? 

Do conformational and colloidal stabilities correlate to aggregation rates? 

Does forced degradation at high temperature predict shelf-life? 

Can alternative methods be developed for predicting aggregation rates? 

Aim3: How can we engineer based on predictions? 

Can we engineer lower aggregation rates? 

Can we develop novel (GRAS-based) excipients? 
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01. Use high-throughput automation to generate a large experimental formulation dataset for 
protein:excipient combinations, that will include aggregation kinetics, conformational stability, 
colloidal stability, phase behaviour, and rheology measurements. 

02. Molecular informatics and modelling will improve predictability of formulation attributes and 
excipient effects 

03. Analytical advances will enable earlier, more sensitive, and lower-volume assessments of 
formulated protein degradation kinetics. 



Heat maps of Fab aggregation kinetics at 4-65 °C 
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Kinetics at low Tine often dont correlate with melting temperature 

Where Tine<< Tm• fraction unfolded is <<0.0001: 

Global unfolding (and hence Tm) is not relevant 

Native ensemble dynamics & colloidal stability 
control aggregation kinetics. 
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• Fab 4C pH3.5-9 

• Fab 23C pH3.5-9 

• Fab 45C pH3.5-9 
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Zhang et al. (2018) Molecular Pharmaceutics. 15, 3079-3092 1 E l6 
Robinson et al. (2018) Molecular Pharmaceutics. 15, 256-267. · - 1.E-13 1.E-10 1.E-07 1.E-04 1.E-01 
Chakroun et al. (2016) Molecular Pharmaceutics. 13, 307-319. 
See also Roberts (2013) - review on non-Arrhenius protein aggregation. f 1 





Small-angle x-ray scattering of Fab under native conditions 
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• Conformational change with pH correlates with aggregation kinetics, at 23 °C 

Godina at al. 2019 JMB 



Molecular dynamics simulation for Fab 

Equilibrium RMSF {300K) 
pH?, 25°C, 50ns, 50mM IS 
pH3.5, 25°C, 50ns, 50 mM IS 
OPLS-AA/L force field & SPC/E water 
Triplicated 

pH 7 pH 3.5 

CL domain displacement 

Godina at al. 2019 JMB 



Which molecular dynamics simulation structures explain SAXS? 
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Godina at al. 2019 JMB 
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Single-molecule fluorescence 



smFRET analysis of pH-dependent Fab conformations 
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smFRET, SAXS and MD reveal the same dynamics and conformational shift with pH 
Godina at al. 2019 JMB 



Best-fit SAXS structures reveal APR exposure at low pH 
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Godina at al. 2019 JMB 



Protein engineering and formulation 
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MD-guided protein engineering to slow aggregation 

180" 

D H35 

Designed 12 stabilising and 5 destabilising 
mutations using ROSETTA at flexible sites. 

Tm did not increase, but ~Svh increased. 
Aggregation slowed where ASvh increased. ~~~~n~~ 
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Zhang et al. (2018) Computational-design to reduce conformational flexibility and aggregation rates of an antibody Fab fragment. Molecular Pharmaceutics. 15, 3079-3092 
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Increasing STPP concentration 
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Lysozyme, pH 8 

• Reentrant condensation phenomena observed with positively charged proteins and STPP (or ATP) 

• Initial [STPP] causes protein precipitation through forming ion bridges across proteins 

• Resolubilization at higher [STPP] due to overcharging protein 

• STPP can direct formation of reversible colloidal gels with glassy dynamics for formulating proteins 

Na 

5 
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• ATP and TPP prevent thermal-induced aggregation 
of negatively charged proteins. 

• Stabilization is due to reduction in aggregate growth 
rates through electrostatic stabilization 

ATP and STPP prevent 
protein aggregate growth 

• Multivalent anions ATP and TPP supercharge 
negatively charged proteins through ion binding 

• Supercharging protein with ATP or TPP increases 
protein-protein repulsion and colloidal stability as 
reflected by increase in 8 22 values at fixed IS 
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Polyvalent anion binding and solubility 
A model (not a web tool), following on from Bye & Curtis: 

Controlling Phase Separation of Lysozyme with Polyvalent Anions 
] rdan " d in A urti * 
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Protein net-charge reversal 

model applied to human proteins 
suggests that over-charging and 
potential solubilisation is general 

Bye and Curtis (2019) J Phys Chem B 123:593; Kalayan et al (2020) Mai Pharm 17:595. 
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Sequence Prediction 
The protein-sol software will take a single amino acid sequence and return the result of a set of solubility 
prediction calculations, compared to a solubility database. 

Please enter a single sequence of single letter amino acid codes in the FASTA format. 

For example 
> P00547 

MVKVYAPASSANMSVGFDVLGAAVTPVDGALLGDVVTVEAAETFSLNNLGRFADKLPSEPRENI VYQCWERFCQELGKQI 
PVAMTLEKNMP I GSGLGSSACSVVAALMAMNEHCGKPLNDTRLLALMGELEGRISGSIHYDNVAPCFLGGMQLMIEENDI 
T c:nnuor.:vni:cwT WUT.n VP!.: T KUC:'T'n v n Rn TT .Pnnvoonnr Tn J:.lf.:Rl.n .nr.:vT wnrvc:RnPVT. n n KT .MKnUT n TCPVRPRT.T.P 

Originally (2017): Sequence-based solublity prediction, based E. colidata 
Currently (2020), also: Patches, Heatmap, Abpred, pKa 
In development (2020): Excipient predictions (for next meeting) 

(2017) Bioinformatics (2017) 33:3098; ; PNAS (2009) 106:4201 
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Patches: with Fab fragment 
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Hebditch and Warwicker (2019) Sci Rep 9: 1969 
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Hebditch and Warwicker (2019) Sci Rep 9:1969; Hebditch et al (2020) Comp Struct Biol J 18:897 
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AbPred: ML models from mAb137 
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A machine learning model for each of the 12 
methods, this example is prediction of HIC 
{orange), against the background {green). 
Models predict hydrophobicity {HIC etc, 
below) a problem for this mAb. 

97b95a7 Olef46419fl5 
Ar;iproved 

Phase 3 
Phase 2 

mAb137 is a dataset of 12 
biophysical measurements {HIC 
etc) for 137 mAbs {Jain et al 2017) 

Experimental value (min) 

problem no problem {predicted) 
ETA lllC S ·IAC SGAC CIC CSI AC HE PSR ELISA BVP DSF AS 

Hebditch and Warwicker (2019) PeerJ 7:e8199; Jain et al (2017) PNAS: 114:944. 



Take-home messages 

Aim1: Understand factors affecting aggregation in formulation ~t 

- local dynamics/unfolding 
- exposure of aggregation hotspots (APRs) 
- colloidal stability (net charge) 
- Optimize formulations to increase Tm, decrease dynamics and increase net charge 

Aim2: How can we predict better formulations? 

- Local dynamics and aggregation hotspots can be predicted computationally 
- Excipient interactions can be predicted by molecular docking or LCMS 
- Net charge and effect of charged excipient binding can be predicted computationally 
- see webserver at protein-sol.manchester.ac.uk 

Aim3: How can we engineer based on predictions? 

- Mutations that suppress dynamics sometimes decrease aggregation kinetics 
- Novel (GRAS-based) excipients based on dipeptides, and supercharging with STPP 
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