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Electrodynamic Balance (EDB) for Droplet Drying Kinetic
Measurement
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Influence of Temperature on Aerosol Droplet Drying Kinetics: Influence of Relative Humidity on Aerosol Droplet Drying Kinetics:
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Drpplet _diSpenser : Evaporation profile of 0.6 v/iv % colloidal silica droplets drying at varying (a) Evaporation profiles of 0.5 vol.% aerocolloidal silica droplets at 294 K over a
Orific diameter (30 pum) « ) ) temperatures. (a) normalized radius (R/R,) as a function of time. The droplet range of RH from O - 90 %. The droplet evaporation rates increases with decreasing
Temporal droplet evaporation rate increases with increasing gas phase temperature. relative humidity.

Circulating RH@ % YY radius evolution . . . - _ _ _ _ _ _
EDB Basics fluid @T °C (b) Dependence of the inclusions surface locking points on temperature. The locking  (p) Initial droplet radius (dark line), lock radius (red line) at which the locking
point time (LPT) and the radius at which the locking point time occurs (lock radius)  point time (blue line) occurred. The shaded region and the error bar are the

> An AC fields is applied to the top and bottom electrodes to produce a time-varying electric (AC) is defined as the onset of the first visual skin or shell formation and morphology standard deviation for over 15 droplets averaged for each droplet kinetic
fields that confines a charged droplet in ”fiee space” at the centre of the trap. development where the surface properties of the drying droplet transitions from a measurement.
smooth liquid surface to a rough solid phase. For T = 263 K , the locking point

» Gravitational, drag force from gas flow and electrostatic force are balanced by static DC voltage ime s = 11,3 5 witnime lock radius av= 12,8 Him

applied between the electrodes. Influence of Temperature and Relative Humidity on Evaporation Rate and Péclet Number

» Single droplets constrained at the trap centre is illuminated with a 532 nm CW laser, and the
resulting elastically scattered laser light from the spherical, liquid droplet in the form of light and
dark fringes is collected over an angular range ~24° centred at 45° to the forward direction of the S (T
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laser. The fringe spacing in the elastic light scattering, relates to the droplet size. D IS = { Pe;(T,RH,1;) = —4KT—K(T, RH)
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The Falling Droplet Column (FDC): L
for Collecting Dried Microparticles and Offline Imaging Analysis _ [ ks
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. Evolution of evaporation rate (k) from kinetic measurements for RH /%
down the column, so that dried . . . . . - :
. i icl lected at th droplets drying at different gas phase temperatures into varying humid Pe-T-RH Phase Map for a 0.4 % v/v silica droplets evaporating at

le"f“ﬂ Ofiﬁ'ee { . _ . pallicics alt 90 - ? a ? conditions. The error bars are standard deviations from evaporation rate different drying temperatures into varying % RH conditions. The Pe
alling droplet ! Heating nichrome wire bottom. The final dried particle constants obtained from averaging 20 droplets at each measurement. number appears to be independent of temperature at higher RHs
> coil (Temperature control) surface properties and

morphologies are analysed offline

using Scanning Electron

Microscopy (SEM).

Gas flow outlet <=

Glass slide With the same drying conditions in
] (Dry microparticle collection) the FDC and the EDB, the aerosol
Laser @532 nm Mitvor: () droplet drying kinetics can be
correlated directly to the final
properties of the dried particles

Effect of Initial Droplet Composition on Aerosol Droplet
Evaporation Rates
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The figure shows evaporation (drying ) rates
of different aerocolloidal droplets (hydrophilic
silica and polystyrene beads ) compared with
the evaporation rate of water (HPCL)

HPLC (water)

HPCL The evaporation rate were obtained by fitting a
PG = 200 ) straight line to the first stage of the

b — 700mm) evaporation process where the temporal
Sl 260 evolution of the droplet surface area follows
P( =200 nm)@0.2% isothermally as the well-known “R - squared
law and are very similar to the rate constant

for the pure water droplet.

Drying rate constant [x10 um?s™]

Thus, the starting composition of the

aerocolloidal droplets does not strongly

influence the solvent evaporation/drying rate o I T T SO IS0 Wolodnm  HGhPCOD Hghve X0 loum

P(d =) : droplet composed of polystyrene beads with the included particles acting as particles \ith smooth Folded Wlth trlpodal inward
(P) of diameter (d =) spectators surface indentations
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SEM micrographs of dried silica microparticles from 0.4 % v/v colloidal silica droplets produced by a droplet chain technique at increasing Péclet

numbers for temperature - RH drying condition
Conclusions

v' EDBSs can be used to:
Measure aerosol droplet drying kinetics to obtain evaporation rates constants and to predict onset of inclusions surface shell/skin formation
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