

The role of powder diffraction in populating the crystal structure landscape: status and methods
 Dr. Kenneth Shankland

Overview

- Quick review of PXRD limitations
- DM \& the global optimisation approach
- SDPD in context, challenging examples
- Checking the structures
- Co-crystals
- Emphasis on laboratory X-ray data

Anatomy of a powder pattern

A few hundred reflections

SX vs. PXRD (typical)

	Single crystal	PXRD
Number of refs.	Thousands	Hundreds
Accuracy of intensities	Excellent	Good to very poor
Resolution	<1 Angstrom	Ca.1.3 Angstom

Net result: standard DM of structure solution tend not to work very well with powder data

Modified DM

- As exemplified by the EXPO program of the Bari group

Coupled with

- Fourier map interpretation plus

Amodiaquinium dichloride dihydrate (*)
$P 2_{1} / C \quad V=2284 \AA^{3}$
30 non-H atoms
And many more...
(*)www.powderdata.net

The global optimisation alternative

- Assumptions
- Data have been collected and indexed
- Space group has been determined
- Data have been fitted in a model independent Pawley or LeBail type fit
- Molecular connectivity is known

Global optimization

Basic global optimisation

7 DoF

Compare \& update 10000 times a sec.

University of
 Reading
 Molecular crystal structures since 1990

As a function of atoms in the a.s.u.

Average complexity in atom terms

Average complexity in DoF terms

Reading

Context - Powder average \& max DoF

Why global search?

Global search methods

- Simulated annealing
- Mimics the annealing of molten systems into an ordered state
- Genetic algorithms / evolutionary algorithms
- Mimics Darwinian (or Lamarckian) evolution
- Swarm / ant colony
- Mimic the movement behaviour of bees / birds / ants etc....

Big structures from lab XRPD

Chlorothiazide (DMF)2

 solvate$$
\begin{aligned}
& -V=3816 \AA^{3} \\
& -P 2_{1} / c, Z^{\prime}=2 \\
& -N_{\text {frag }}=6, N_{\text {atoms }}=94
\end{aligned}
$$

Cyheptamide form II

- $V=2412 \AA^{\circ}$
- $P-1, Z^{\prime}=4$
$-N_{\text {frag }}=4, N_{\text {atoms }}=128$

Big structures from lab XRPD

Verapamil hydrochloride
$-V=1384 \AA^{3}$
$-P-1, Z^{\prime}=1$
$-N_{\text {frag }}=2, N_{\text {atoms }}=73$

Problems and solutions

- Success rate drops as number of atoms increases
- E.g. for verapamil hydrochloride, only a few \% of SA runs reach the global minimum
- Time taken to obtain solution increases
- Addressing this issue
- Optimise the SA optimiser
- Increase the level of parallelisation
- Improve starting model accuracy
- Take home message
- Chances of solving a typical structure are good, and set to get better

A warning

- Refinement stage becomes increasingly difficult as we solve larger and larger structures
- Chemical sense, not just fit to data, is the ultimate arbiter

IBPRAC04

α-Hydroxyglycine

Structure solution attempted with a Marvin model

How best to check?

- DFT
- Lund, A. M et al. Optimization of Crystal Structures of Archetypical Pharmaceutical Compounds:A Plane-Wave DFT-D Study Using Quantum Espresso. Crystal Growth \& Design 2013, 13 (5), 2181-2189.
- Attention grabbed by:
- Modest computing (dual 6 core Xeons, 24Gb RAM)
- Modest run times (3-80 hrs for typical small molecule organics)

DFT-D of AHG

- AHG structure optimised using DFT-D calculations.
- Calculations were carried out with parallelised Quantum Espresso v5.0.2 installed on Ubuntu 13.09 utilising 12 core nodes (dual 6-core Intel Xeon E5-2630 processors, 2.3GHz) and 32GB RAM. [ca. £2000]

Model optimisation

- Crystal structure optimised with DFT-D using a fixed cell calculation, 'relax'.
- AHG forms a lower energy crystal structure as a zwitterion
 than the uncharged molecule
- The zwitterionic model was then recycled into the SA and gave a significantly improved fit to the PXRD data

Structural verification

- Minimise SA structure and lattice parameters
- 'Variable-cell relax' calculation took 29 mins 30 seconds; reduced the total energy by 0.475382 Ry.

Crystal structure of AHG (coloured) \& DFT-D optimised structure (green), confirming SA structure RMSD $=0.043 \AA^{2}$

A co-crystal example: CBZ:IND

-Ground 1:1 molar mixture of β-CBZ and γ-IND for 4 hrs in a ball mill

- Stored $40^{\circ} \mathrm{C}$ / 75% RH for 21 days
- At $t=0$, resultant powder appears 'X-ray amorphous'
-At $t=21$ days, powder displays 'novel' PXRD pattern

CBZ:IND

- $P 2_{1} / C, V=2920 \AA^{3}$ (indicative of $1: 1$ cocrystal)

‘pure’ CBZ:IND pattern extracted using TOPAS after simultaneous
Pawley/Rietveld

CBZ:IND - Easily solved

IND:NIC

- Easily solved
- Hydrogen bonding propensity(Mercury, CCDC)

Thanks to...

- STFC: Data Analysis Group
- Reading: Mark Spillman, Elena Kabova, David Edgeley, Mridul Majumder
- CCDC: Jason Cole, Jacco van de Streek, Elna Pidcock, Oliver Korb
- DASH-CCDC
- SDPD Context: Acta C (2013) 69, 11, 1251
- CBZ:IND: CrystEngComm (2011)13,6327
- IND: NIC : CrystEngComm (2013) 15,4041

